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Preface

Exploration of very large search spaces lies at the heart of many disciplines in
computer science and engineering, especially systems verification and artificial
intelligence. In particular, the technique of model checking is used to automati-
cally verify the properties of a system. In the model checking approach, verifying
that a system S satisfies a property P is investigated by automatically checking
the satisfiability of the expression Mg = ¢p, where Mg is a suitable model rep-
resenting all evolutions of S, and ¢p is a logical formula capturing the property
P to be checked.

Model checking and artificial intelligence have enjoyed a healthy interchange
of ideas over the past few years. On the one hand, model checking techniques
have benefited from efficient search algorithms developed in artificial intelligence
thereby increasing their efficiency, on the other, model checking techniques have
been extended to deal with typical artificial intelligence formalisms, such as
epistemic logics, thereby permitting the verification of systems based on artificial
intelligence concepts. In addition to this, there remains a keen interest among
researchers to use model checking to solve planning problems.

The forth MOCHART workshop aimed at bringing together researchers in-
terested in the interplay of these areas. The workshop was held as a satellite
workshop of ECAI 2006, the 17th biennial European conference on Artificial
Intelligence. Previous workshops were held in San Francisco in 2005 (as a satel-
lite workshop of CONCUR 2005), Acapulco in 2003 (as a satellite workshop of
1JCAT 2003), and Lyon in 2002 (as a satellite workshop of ECAI 2002).

This volume includes extended versions of eight of the nine papers selected for
presentation at the workshop after a selective round of reviews, as well as three
further papers selected from submissions to the post-proceedings. An article
based on an invited presentation to the workshop is also included. The papers
are included in the order in which they were presented at the workshop.

The volume begins with the invited contribution by Bertoli et al. on a broad
overview of the use of model checking techniques for safety analysis, diagnosabil-
ity and synthesis in reactive systems. This is followed by an article by Alechina
et al. investigating the reasoning capabilities of resource bounded agents. A con-
tribution by Edelkamp on a variety of genetic algorithms operating on pattern
databases represented via OBDDs follows.

Hoffman et al. then discuss efficient optmization methods for model check-
ing real-time systems by introducing predicate abstraction to generate efficient
heuristic search functions. Analysis for real-time systems also features in the
following paper by Edelkamp and Jabber investigating the performance of sec-
ondary storage solutions for three search algorithms. Concluding in this line,
Lomuscio et al. present and evaluate algorithms for model checking networks of
timed-automata with clock differences against epistemic real-time specifications.



VI Preface

Genetic algorithms feature again in the following article where Araragi and
Cho suggest a reinforcement learning technique to check liveness in reactive
systems. This is followed by a paper by Pecheur and Raimondi on model check-
ing variants of CTL supporting explicit actions via OBDDs. In the next paper,
Viganod proposes a methodology based on SPIN to verify the multi-agent frame-
works of e-institutions described by an ad-hoc modelling language.

In a change of topic Kurkowski et al. present a SAT-based methodology for
the verification of security protocols by modelling principals via networks of
communicating automata. Wijs and Lisser conclude the volume by analyzing
variations of distributed beam search algorithms to find solutions to scheduling
problems via model checking.

All the papers represent solid contributions to the state of the art in the inter-
play between artificial intelligence and model checking and provide an interesting
overview of the current trends of research worldwide.

We very much enjoyed the workshop and wish to thank the authors for their
excellent contributions and the program committee for their outstanding service
in selecting the papers.

We conclude by thanking Springer for enthusiastically supporting the idea
of publishing the post-proceedings of the event. The British Royal Association
of Engineering and the Deutsche Forschungsgemeinschaft are also acknowledged
for their generous support.

February 2007 Stefan Edelkamp
Alessio Lomuscio
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A Symbolic Model Checking Framework for
Safety Analysis, Diagnosis, and Synthesis*

Piergiorgio Bertoli, Marco Bozzano, and Alessandro Cimatti

ITC-irst - Via Sommarive 18 - 38050 Povo - Trento - Italy
{bertoli,bozzano,cimatti}@irst.itc.it

Abstract. Modern reactive control system are typically very complex entities,
and their design poses substantial challenges. In addition to ensuring functional
correctness, other steps may be required: with safety analysis, the behavior is an-
alyzed, and proved compliant to some requirements considering possible faulty
behaviors; diagnosis and diagnosability are forms of reasoning on the run-time
explanation of faulty behaviors; planning and synthesis allow the automated con-
struction of controllers that implement desired behaviors. Symbolic Model
Checking (SMC) is a formal technique for ensuring functional correctness that
has achieved a substantial industrial penetration in the last decade. In this paper,
we show how SMC can be used as a convenient framework to express safety
analysis, diagnosis and diagnosability, and synthesis. We also discuss how model
checking tools can be used and extended to solve the resulting computational
challenges.

1 Introduction

In recent years, complex applications increasingly rely on implementations based on
software and digital systems. Typical examples are transportation domains (e.g. rail-
ways, avionics, space), telecommunications, hardware, industrial control. The design of
such complex systems is a very hard task. On the one hand, more and more functional-
ities must be implemented, in order to provide for flexible, user-configurable products.
On the other hand, there is a need to achieve higher degrees of assurance, given the
criticality of the functions.

For the above reasons, the engineering of complex systems has witnessed the intro-
duction of model-based design techniques and tools. The idea is to write system models,
expressed at different levels of abstraction, and to provide support tools to automatically
analyze them. Different languages can be used to express such models; in general, they
can be encoded and treated in terms of transition systems. Model checking is a verifi-
cation technique to check whether a system (modeled as a transition system) satisfies
certain requirements (modeled as temporal logic).

Goal of this paper is to draw a unifying view between different aspects of engineer-
ing, within the framework of model checking. We show how many different stages in
model-based design can be cast in the framework of model checking, and can benefit
from the advanced symbolic model checking techniques and tools.

* This work has been partly supported by the E.U.-sponsored project ISAAC, contract no. AST3-
CT-2003-501848.

S. Edelkamp and A. Lomuscio (Eds.): MoChart IV, LNAI 4428, pp. 1-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 P. Bertoli, M. Bozzano, and A. Cimatti

We proceed in order of increasing complexity. We start by defining the problem
of model checking, and providing an overview of the available techniques. Then, we
consider the field of safety analysis: while in model checking the behavior of the system
is analyzed under nominal conditions, in safety analysis the problem is to check the
behavior of the design in presence of failures. This phase is carried out at design time.
The only increase required in the framework is the specification of a selected set of
failure mode variables. The next problem is diagnosis, that can be seen as the problem
of safety analysis carried out at run-time. On one side, only one trace at the time is
considered. On the other side, diagnosis is usually performed on systems which provide
limited run-time sensing, making the problem much harder. Another interesting and
related problem, known as diagnosability, is the analysis, at design time, of diagnosis
capabilities. We conclude with the problem of planning, which in the general setting
used in this paper amounts to the problem of synthesis, i.e. automatic generation of
controllers from specifications. The problem has been addressed in many variations,
and has interesting overlappings with diagnosis. In particular, in the case of planning
under partial observability, actions must be planned in order to achieve a given amount
of information.

This paper is structured as follows. In Section 2 we describe model checking, and
overview the main symbolic implementation techniques. In Section 3 we present the
ideas underlying safety analysis. In Section 4 we discuss the role of model checking
in diagnosis and diagnosability. In Section 5 we discuss planning based on symbolic
model checking, and in Section 6 we draw some conclusions, and outline directions for
future work.

2 Symbolic Model Checking

Model checking [21,22,45] is a formal verification technique that is widely used to
complement classical techniques such as testing and simulation. In particular, while
testing and simulation may only verify a limited portion of the possible behaviors of
complex, asynchronous systems, model checking provides a formal guarantee that some
given specification is obeyed. In model checking, the verified system is modeled as
a state transition system (typically of finite size). The specifications are expressed as
temporal logic formule, that express constraints over the dynamics of systems. Model
checking then consists in exhaustively exploring every possible system behavior, to
check automatically that the specifications are satisfied. In the case of finite models,
termination is guaranteed. Very relevant for debugging purposes, when a specification
is not satisfied, a counterexample is produced, witnessing the offending behavior of the
system. Formally, model checking relies on the following definition of a system:

Definition 1 (System). A system is a tuple M = (S, S;, T, R) where:

— S is a finite set of states,

- S; C S is the set of initial states,

— T is a finite set of inputs,

— R C S8 xZ x S is the transition relation
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The transition relation specifies the possible transitions from state to state, triggered by
the applications of inputs to the system. For technical reasons, it is required to be total,
i.e. for each state there exists at least a successor state. From such a tuple, abstract-
ing away from inputs, one can immediately extract a state transition graph, a Kripke
structure that only describes transitions from states to states.

Sy A B7

Fig. 1. A State Transition Graph and its unwinding

A path in such a Kripke structure is obtained starting from a state s € S;, and then re-
peatedly appending states reachable through R; since inputs have been abstracted away,
a path corresponds to the evolution of the system for some sequence of inputs. Given
the totality of R, behaviors are infinite. Since a state can have more than one successor,
the structure can be thought of as unwinding into an infinite tree, representing all the
possible executions of the system starting from the initial states. Figure 1 shows a state
transition graph and its unwinding from the initial (colored) state. A Kripke structure is
typically associated with a set of propositions P, and with a labeling function that maps
each state onto a truth assignment to such propositions. In the following, we assume
that one truth assignment to the variables in P is associated to at most one state, and we
write s |= p to indicate that a proposition p holds in a state s.

Traditionally, two temporal logics are most commonly used for model checking,
CTL and LTL [31]. Computation Tree Logic (CTL) is interpreted over the computation
tree of the Kripke structure, while Linear Temporal Logic (LTL) is interpreted over
the set of its paths. These two logics have incomparable expressive power, and differ in
how they handle branching in the underlying computation tree: CTL temporal operators
quantify over the paths departing from a given state, while LTL operators describe
properties of all possible computation paths.

Model checking is the problem of deciding whether a certain temporal formula ¢
holds in a given Kripke structure M (see [24] for a detailed overview). In the following
we use the notation M = ¢. The first model checking algorithms used an explicit rep-
resentation of the Kripke structure as a labeled, directed graph [21,22,45]. Explicit state
model checking is based on the exploration of the Kripke structure based on the ex-
pansion and storage of individual states. Over the years, explicit state model checking
has reached impressive performance (see for instance the SPIN model checker [38]).
The key problem, however, is that explicit state techniques are subject to the so-called
state explosion problem, i.e. they need to explore and store the states of the state tran-
sition graph. In industrial sized systems, this amounts to an extremely large number of
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Fig. 2. A BDD for the formula (a1 < a2) A (b1 < b2)

states. In fact, the Kripke structure is typically the result of the combination of a num-
ber of components (e.g. the communicating processes in a protocol), and the size of the
resulting structure may be exponential in the number of components.

A major breakthrough was enabled by the introduction of symbolic model check-
ing [40]. In symbolic model checking, rather than individual states and transitions,
the idea is to manipulate sets of states and transitions, using a logical formalism to
represent the characteristic functions of such sets [26,43,52,15]. Since a small logical
formula may admit a large number of models, this results in most cases in a very com-
pact representation which can be effectively manipulated. Each state is presented by
an assignment to the propositions (variables) in P (equivalently, by the corresponding
conjunction of literals). A set of states is represented by the disjunction of the formulae
representing each of its states. The basic set theoretic operations (intersection, union,
projection) are given by logical operations (such as conjunction, disjunction, and quan-
tification). In the following we use x to denote the vector of variables representing the
states of a given system; we write S;(z) for the formula representing the initial states.
A similar construction can be applied to represent inputs (for which we use a vector of
variables 7). A set of “next” variables z’ is used for the state resulting after the transi-
tion: a transition from s to s’ is then represented as a truth assignment to the current and
next variables. We use R(z,¢,z’) for the formula representing the transition relation
expressed in terms of those variables.

Obviously, the key issue is the use of an efficient logical representation. The first
one used for symbolic model checking was provided by Ordered Binary Decision Dia-
grams [12,13] (BDDs for short). BDDs are a representation for boolean formulas, which
is canonical once an order on the variables has been established. This allows equiv-
alence checking in constant time. Figure 2 depicts the BDD for the boolean formula
(a1 < a2) A (b1 < b2), using the variable ordering a1, as, b1, bs. Solid lines repre-
sent “then” arcs (the corresponding variable has to be considered positive), dashed lines
represent “else” arcs (the corresponding variable has to be considered negative). Paths
from the root to the node labeled with “1” represent the satisfying assignments of the
represented boolean formula (e.g., a; <+ 1,a2 «— 1,b7 <« 0,by < 0).
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Such a powerful logical computation machinery provides the ideal basis for the im-
plementation of algorithms manipulating sets of states. In fact, the use of BDDs makes
it possible to verify very large systems (larger than 102° states [15,40,14]). Symbolic
model checking has been successful in various fields, allowing the discovery of de-
sign bugs that were very difficult to highlight with traditional techniques. For instance,
in [23] the authors discovered previously undetected and potential errors in the design of
the cache coherence protocol described in the IEEE Futurebus+ Standard 896.1.1991,
and in [29] the cache coherence protocol of the Scalable Coherent Interface, IEEE Stan-
dard 1596-1992 was verified, finding several errors.

A more recent advance in the field originates from the introduction of bounded model
checking (BMC) [7,6]. The idea is twofold. First, we look for a witness to a property
violation that can be presented within a certain bound, say k transitions. Second, we
generate a propositional formula that is satisfiable if and only if a witness to the property
violation exists. The formula is obtained by unwinding the symbolic description of
the transition relation over time. In particular, we use k + 1 vectors of state variables
Zg, . . ., Tk, whose assignments represent the states at the different steps, and k vectors
of input variables 1, . . ., i, that represent the inputs at the different transitions:

Si(zo) A R(xo,i1, 1) AL A R(zk—1,%k, T)

Additional constraints are used to limit such assignments to witness the violation of the
property, and to impose a cyclic behaviour when required. The solution technique lever-
ages the power of modern SAT solvers [30], which are able to check the satisfiability of
formulae with hundreds of thousands of variables, and millions of clauses.

In comparison to BDD-based algorithms, the advantages of SAT-based techniques are
twofold [25]. First, SAT-based algorithms have higher capacity, i.e. they can deal with
a larger number of variables. Second, SAT solvers have a high degree of automation,
and are less sensitive than BDDs to the specific parameters (e.g. variable ordering). As
a result, SAT-based technologies have been introduced in industrial settings to com-
plement and often to replace BDD-based techniques. In addition, SAT has become the
core of many other algorithms and approaches, such as inductive reasoning (e.g. [50]),
incremental bounded model checking (e.g. [36]), and abstraction (e.g. [35]). A survey
of the recent developments can be found in [44].

3 Safety Analysis

The goal of safety analysis is to investigate the behavior of a system in degraded condi-
tions, that is, when some parts of the system are not working properly, due to malfunc-
tions. Safety analysis includes a set of activities, that have the goal of identifying all
possible hazards of the system, and that are performed in order to ensure that the sys-
tem meets the safety requirements that are required for its deployment and use. Safety
analysis activities are particularly critical in the case of reactive systems, because haz-
ards can be the result of complex interactions involving the dynamics of the system
[51]. Traditionally, safety analysis activities have been performed manually. Recently,
there has been a growing interest in model-based safety analysis using formal methods
[11,9,1,10] and in particular symbolic model checking.
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Model-based safety analysis is carried out on formally specified models which take
into account system behavior in the presence of malfunctions, that is, possible faults of
some components. Symbolically, the occurrence of such faults is modeled with a set of
additional propositions, called failure mode variables. Intuitively, a failure mode vari-
able is true when the corresponding fault has occurred in the system (different failure
mode variables are associated to different faults). In the rest of this section, we assume
to have a system M = (S, S;,Z, R) with a set of failure mode variables 7 C P. Fur-
thermore, for the sake of simplicity, we assume that failure modes are permanent (once
Jfailed, always failed), that is, we assume that the following condition holds:

VfEf,Sl,SQES,iEI ((Sl,i,82>€R/\81 'Zf) = SQb:f (1)

The theory can be extended to the more general case of sporadic or transient failure
modes, that is, when faults are allowed to occur sporadically (e.g., a sensor showing
an invalid reading for a limited period of time), possibly repeatedly over time, or when
repairing is possible.

In this section we briefly describe two of the most popular safety analysis activities,
that is, fault tree analysis (FTA) and failure mode and effect analysis (FMEA), and we
discuss their relationship with the symbolic model checking techniques illustrated in
Section 2. Fault Tree Analysis [53] is an example of deductive analysis, which, given the
specification of an undesired state, usually referred to as a top level event, systematically
builds all possible chains of one of more basic faults that contribute to the occurrence of
the event. The result of the analysis is a fault tree, that is, a representation of the logical
interrelationships of the basic events that lead to the undesired state. In its simpler form
(see Fig. 3) a fault tree can be represented with a two-layer logical structure, namely a
top level disjunction of the combinations of basic faults causing the top level event. Each
combination, which is called cut set, is in turn the conjunction of the corresponding
basic faults. In general, logical structures with multiple layers can be used. A cut set is
formally defined via CTL as follows.

Definition 2 (Cut set). Let M = (S, S;,Z, R) be a system with a set of failure mode
variables F C P, let FC' C F be a fault configuration, and TLE € P a top level event.
We say that FC is a cut set of TLE, written cs(FC, TLE) if

MEEF(N\ f A N\ ~f A TLE).
feFC FE(R\FO)

Intuitively, a fault configuration corresponds to the set of active failure mode variables.
Typically, among the possible fault configurations, one is interested in isolating those
that are minimal in terms of failure mode variables, that is, those that represent simpler
explanations, in terms of system faults, for the occurrence of the top level event. Under
the hypothesis of independent faults, these configurations also represent the most prob-
able explanations for the top level event, and therefore they have a higher importance in
reliability analysis. Minimal configurations are called minimal cut sets and are formally
defined as follows.

Definition 3 (Minimal Cut Sets). Letr M = (S,S;,Z,R) be a system with a set of
failure mode variables F C P, let F' = 2% be the set of all fault configurations, and
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