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Preface

This volume primarily contains papers presented at the meeting
entitled ’“Stochastic Mechanics and Stochastic Processes  held in

Swansea from 4 August to 8 August 1986. Also included in the volume
are some related papers, not presented at the meeting, but in the
same subject area. The topics covered herein are quite varied but

all related to the central themes of the meeting, including large
deviations and statistical mechanics, Nelson’'s stochastic mechanics
and quantum diffusions, simulations of Brownian Motions and
stochastic flows. The meeting was most worthwhile both in the
quality of the talks given and the level of discussion generated on
the subject of stochastic processes and stochastic mechanics.

Most of the papers herein are reasonably self-contained and
should be readily accessible to researchers in this field. For
beginning students in Nelson’s stochastic mechanics we recommend that
they start by reading the first paper in this volume by Batchelor and
Truman, which deals with stochastic mechanics for excited states of a
system with finitely many degrees of freedom. Some of the
corresponding stochastic flows are discussed in the paper by Chappell
and Elworthy, where new results are given for their Lyapunov

exponents. There are related papers by Yasue, Durran and Williams
and Steele. Zambrini ‘s paper includes new results for Bernstein
processes and stochastic mechanics. An interesting new treatment of

stochastic mechanics for systems with infinitely many degrees of
freedom (quantum fields) is given in the paper by Carlen.
Supersymmetry is discussed in the paper by Haba.

There is an excellent expository account of large deviations in
statistical mechanics by Lewis, and two papers by Lewis and
co-workers in statistical mechanics itself. There have been
exciting new developments in this area recently. An introduction to
the algebraic theory of quantum diffusions is given in the paper by
Hudson. New analytical results for stochastic processes are given
in the papers by Kifer, McGill, McGregor and Watling.

It is a pleasure to thank Brian Davies, of King’'s College
London, and Nick Bingham, of Royal Holloway, for their assistance in
helping to organise the meeting and in producing this volume. We
are grateful to the SERC for financial support through research grant
GR/D/88847. We should like to thank Mrs E. Evans, Mrs M. Prowse and
Mrs E. Williams for their patience and application in typing some of
the papers. Last but far from least we would like to thank the
referee for his important contribution.

A. Truman and I.M. Davies
Swansea
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ON FIRST HITTING TIMES IN STOCHASTIC MECHANICS
by

Andrew Batchelor and Aubrey Truman

Department of Mathematics and Computer Science

University College of Swansea
Singleton Park, Swansea SA2 8PP

1. A Resumé of Stochastic Mechanics

The Schrodinger equation for a particle Q of mass m subject to a force =¥V
in IRd is equivalent to
x5y _ _B°

ihy = =

LI *V
3t %W AXV v vy, (1

where * denotes the complex conjugate and h 1is Planck's constant divided by 2m.
Here ¥ = y(x,t) is the quantum mechanical wave-function and the time t ¢ IR+,
the positive reals, and xe¢ ]Rd, d-dimensional Euclidean configuration space.

Since V 1is real-valued, equating imaginary parts of the above equation gives
the continuity equation

2 4 aivj = o, 2)

ot
where p = w*\b is the quantum mechanical particle density and JN = %(w*y_w - wzw*)
is the probability current. The last equation merely expresses the conservation of
particle number in that, for the state ¢, the probability that Q 1is in A at
time t 1is given by
P{Qe A at time t} = | p(x,t)dx, (3)
A

for each Borel set ACIRd.

Following Nelson [6],[7], introduce the real-valued functions R and S defined

i R 2R
by ¢ = eR+1S, so that p = e2 and ;l = (%zs)e i We can then deduce from the
continuity equation that
W _ 4. ok 2R, _ .. b 2R A 2R
5t div( m’VVSe ) = dlv(sze mZ(R+S)e ) (4)
; op _ -
i.e. 5 div(vVp - bp), (5)

_ A - h
for Vo= o and h—mZ(R+S).



The last equation is just the forward Kolmogorov equation for the demsity p

for the diffusion X satisfying

1

ax = p(x(e),0de + Eylagcey, )
where the forward drift b = EZKR-ks), B = (B]’BZ""’Bd) in cartesians, with
E{Bi(t)Bj(s)} = Sijmin(s,t), for i,j =1,2,...,d, B being a BM(IRd) process.

. . R+iS

Moreover, equating the real parts of Eq. (1) gives for ¢ = e

3 B 2 2 v

_c‘ﬁ(le |vs|“ +AR) i (7

Nelson's remarkable discovery was that the last equation embodies a dynamical
principle for the diffusion X.

To see this Nelson defines the mean forward and backward time derivatives D,

by
D,E(R(t),6) = lim gt E(ER ) “EQACE),0) 1y 1y (8)
* h40 *h
Then it follows from Eq. (6) that
DX(6) = h(x(t),t) = Bves+myx(),e) )
and from It8's formula that for sufficiently regular f
_of h
D, f(X(t),t) = (E+Q.2f +o- 00 (X(0),t). (10)

Nelson went on to show that for sufficiently regular functions g and h

d—dt-E (g(X())h(X(t))) = E(g(X(£))D_h(X(t))) +E(D, g(X(t))h(X(t))) (1)

(see e.g. p. 98 Ref (6)).
We can now establish Nelson's result. Firstly, from above, for any
f eCom(Eg), for 1 =1,2,...,d,

h

%E{f(g(t))xi(t)} = E{f(g(t))D_xi(t)} + E{Xi(t) (%(ZR+ vS).Vvf +%Af)(§(t),t)}, (12)

where X = (X]’XZ""’Xd) in cartesians. Since E(g(X(t),t)) = eZR(g’t)g(g,t)dx,
Rd
integrating by parts, using the identity, for i = 1,2,...,d,
—e_ZR(z’t)div{xiZR(g,t)eZR(E’t)} + 2_]e_ZR(ﬁ’t)A(xieZR(z’t)) = ViR(g,t), (13)

for VR = (VIR’VZR"°"vdR) in cartesians, we obtain for each f eCom(le)



S EEO)X (D) = BEEODX (0} +Eui 0 88,30 ¢, 01 Lo mego, o).

(14)
But Ehrenfest's theorem for the quantum mechanical state 1 = eR+ls gives for
sufficiently regular g
d h
3 E@(X)) = SE((¥e) . (I8) (X, 0)). (15)
m
Hence, setting g(X) = f(z)Xi, we obtain
A pex) = LE@ s 0em0) « PEXIS®, 0. 7£00) (16)
dt T m i7~? ~ m L e ~ ?
for 1 =1,2,...,d.
Comparing this with Eq. (14) above, we see that necessarily
_h -
D_Xi(t) = E(vis ViRI(X(E), ) (17)
for i =1,2,...,d. Hence, the backward drift D_X(t) is given by
D_x(6) = Bgs - gr) (x(e),e) (18)
and from It0's formula
_OE B _ A
D_E(X(t),t) = (G + H(US - TR).VE - 5 AF) (X(1), ). (19

Nelson's amazing discovery now follows from Eqs. (9), (10), (18) and (19). After

a tedious calculation we obtain

2
2
%(D_D++D+D_)§(t) = {hzg—f - l;—mz(\z}zl - |gs|2+AR)}<g(t),t), (20)
or from Eq. (7)
3(D_D, + D,D_)X(t) = ~WV(X(t)). 2n

This is the Nelson-Newton law i.e. a stochastic version of Newton's second law of
motion
Force = Mass x Acceleration. (22)
Therefore, we have seen that the net content of the Schrodinger equation for
R+iS
e

the state ¢ = is just the Kolmogorov equation for the diffusion X with

drift g(ZR + VS) and the dynamical principle for X contained in Eq. (21). This
suggests that the sample paths of the diffusion X have some physical significance.
We investigate this for the stationary states of the Coulomb problem below presenting
some new results for first hitting times. We do not give all the details of the

proofs here and we refer the reader to the original references for details. (See



Refs. (2) and (3)).

2. First Hitting Times for Ground States of Spherically Symmetric Potentials

We consider Nelson diffusions corresponding to ground state solutions of the
2
Schrodinger equation fbr a quantum mechanical Hamiltonian H = (—g—mA + V), a self-
adjoint linear operator on some appropriate domain in L (IR ). We specialize to

the case d = 3 and further we assume that the potential V 1is spherically

symmetric, V = V(|g5[), for xe IR3, being the Euclidean norm.

2 ;
Let ‘PE(g,t) = WE(?S) €L (IR3) be such a ground state with

-1 -iEt
vt = |xl e (x)e TER, (23)
E being inf spec (H). Then, as is well-known, fE satisfies (Hr—E)fE =0,
i.e. setting x = |§|,
2
QB V(x) - E}_(x) = 0 (24)
2m 2 E ’
dx
5 & .
where Hr = —7——2 + V(x) 1s the radial Hamiltonian. We assume that V 1is
piecewise continuous with finite discontinuities on (0,*) so that fE 1s C and,

of course, fE >0 on (0,*) and fE(O) =
A straight-forward application of It6's formula yields for the Nelson diffusion

X corresponding to the state ‘PE

alx| = Ed*[dir In £ ([X])dt + (%

™

1
)2dR(t), (25)

8 being a BM(IR) process. This is a one-dimensional time-homogeneous diffusion

with generator
2
2

L, = +

X

h d
Zmdx

=Nh=p

d d
= 1n fE(x)d_x ¢ (26)

By virtue of Eq. (24) the radial diffusion |X| satisfies the Nelson-Newton law

5(D,D_ + D_D)[X(t)]| = d[X| V(x| (t)). (27)
Moreover, since for any 02 function f,
-1 -1 p
f (Hr—E)(fEf) = fE {_ﬂ(fEf'1+2fE’f'+fEl'f) + (V-E)fEf} = -hLf, (28)

fE being positive, we obtain formally at least

P (%,y) = (X)eXP{’F P TEVGLYIE (), (29)



P, being the transition density for |X], exp{-%(Hr'-E)Kx,y) being the appropriate

heat kernel. For convenience now set h =m = 1,
We now set about finding the distribution of Tx(a):
Tx(a) = inf{s >0 : |X(s)| = a, |§(0)1 = x}, (30)
the first hitting time of the level a for the process starting at x, The key

result here is
@_+r -8 (x,a)

H_+1-B)" (a,a)

=1
E

E(exp(—er(a))} = f_ (x) fE(a), (A >0), (31)

where (Hr + A —E)-l(x,a) is the resolvent kernel. The last identity follows because
|X| is a one-dimensional time-homogeneous diffusion. For such a diffusion to have

gone from x to y in time t the first hitting time of any intermediate point a
must be less than t. Since the process starts afresh from a, for each fixed x,y

and any intermediate a,

t
P (%) = | glx,a3u)p, _ (a,y)du, (32)
0
where g(x,aju)du = H’{Tx(a) € (u,u+du)}. The desired identity follows by taking
Laplace transforms and letting y +a. This leads to:
PROPOSITION 1
Let E(<0) be inf spec (H), where H = —2_1AX + V(|§J). For each x>0, let

the equation

-1 d2
=27 =4+ (V(x) +2-E)y = 0 (33)
dx
have two linearly independent c?2 solutions fE-A and I defined by fE—A(O) =0,
2
’ & - ' - . . p .
fE-A(O) ls gE—A(O) 1, gE—A(O) 0. (This will be the case e.g. if x V(x) 1is

analytic in a neighbourhood of the origin.) Then, if V 1is piecewise continuous,
with V(x) >0 as x->«, for Tx(a) the first hitting time for the ground state
radial process, for the Hamiltonian H, for x<a,

E{exp(-XTX(a))} = fE—x(x)fE(a)/fE—A(a)fE(x)’ (34)

whilst for x>a

E{exp(-2t (a))} = hy_ ()f (a)/h._, (a)f (x), (35)

h being the unique solution of Eq. (33), which is exponentially decreasing at infinity.




The above result yields:
COROLLARY 1
Let x>a and further let V have compact support with suppVc [0,a). Then

for the radial ground state process with energy E(<0)

E{exp(-At (a))} = exp(~V(-2(E - 1)) (x —a))exp(+/(-2E) (x —a)). (36)
Thus,
2
E(Tx(a)e ds) = (2ﬂ)_%|a —x|S—3/2exp{Es —Szii?L—+ V(-2E) (x —a)}ds. (37)
In this case, therefore, for x>a, with suppVc[0,a), the distribution of Tx(a)

is the same as that for Brownian motion with a constant drift —(-2E) (see e.g. Ref.
(10)). The last example is atypical in that one has an explicit formula for the
distribution of Tx(a). More typical is the next example.
Example 1 (Spherical Square Well Ground State)
Let V(x) = —VO, for |5| <r0, V(x) = 0, otherwise. The ground state energy

E and ground state wave-function fE are defined by

sinh(V(=2(E+V ) |x]), x| <r,

fE(Izsl)={ o T

B exp (-V(-2E))|x|), Izl >z,

where E and B satisfy

sinh (Y (-2 (E +V_))r ) = Bexp (—/(—ZE)rO),

a—ﬂ—osinh(\/(—z(E+ v)r,) = ddTOB exp (~/(=2B)r_) .
Let x<a<r0. Then

sinh(¥(-2(E V- A))x)sinh(V(=2(E + v.)a)
sinh(V(-2(E +VO -A)a)sinh (V(-2(E +Vo))x)'

E{exp(-)rx(a))} = (38)

Similar results can be obtained for other values of x and a. A more interesting
physical example is:
Example 2 (Coulomb Problem Ground State)

Let V(x) = —Ze2/|§|. The ground state energy E = —]/2a§, ag being the
Bohr radius 1/Ze2. The corresponding ground state wave-function is

fE(|§|) = |x| exp(—|5|/ao). In this case we obtain



1
Elexp(-At_(a))} = |2 roa) W7 0, 39)
exp T = |5| exp a Jw 7<a r=>a), (
1 1{a
w2 °
and
2kr
B 1[7]
£l tsde (aY) ) = a r-a) 02 °
exp(-At _(a = 7| exp | J

r<a), 40
s (r<a) (40)
o ’M —_—

1 1| a

— o

K2

a0 being the Bohr radius and «k = e +ZaZX), W and M being Whittaker functions.

(See Ref. (3)).

Needless to say we cannot find the inverse Laplace transforms for either of above

examples. We choose a different approach below.

3. Expected Values of First Hitting Times

We begin with a minor extension of an analytical result of Mandl (see Ref. (5)).
We use the same notation as above.
PROPOSITION 2

Let fE(>0) be such that b(x) = fé(x)/fE(x) is Lipschitz continuous on (0,®),

0 and = being entrance and natural boundaries for the radial gound-state diffusion

2
|§| with generator Lx =2 111§-+ b(x)az-. Then for the radial ground state
dx

process V(x) = E(rx(a)) satisfies
L v = 2760 + bV () = -1, (41)

together with the boundary conditions v(a) = 0 and lim fz(x)v'(x) =0 for x<a
x+0

and lim fé(x)v'(x) =0 for x>a.
Xt

The proof of this relies heavily on the methods of Mandl (see Refs. (5) and (3)).
Here we content ourselves with a formal explanation of what is going on. First we

differentiate with respect to A the equation



(H_+ )\ -E)_, =0,
yielding
df -1
HE—)\ ——(Hr+>\—E) f
If we assume V(x) = E(Tx(a)) = 1lim é%»m{exp(~ATX(a))
A+0

the desired conditions on V.

E-2°

(42)

}

the last identity leads to

To see this refer back to the results of the last section for x<a, using
fE—X -> fE as A-~>0, y .
in é%—E{exp(—XTx(a))} ) (H_ -;)(X;E(x) (H_ -f)(a;E(a) , s
A¥0 E E
where (Hr-E)- is an integral operator whose boundary conditions are to be found.
Recalling that L = -f;l(Hr —E)fE, we obtain
Lv(x) = -1, v(a) =0, (44)
for v(x) = E(Tx(a)). The remaining boundary condition comes about because
df df
——E-2 —E-2)
v = 1 (@) = -G D=0 0" o (45)
X £ (x) f.(a) '
E E
Differentiating, using the facts that fE(x) +0 and fé(x) +1 as x~+0, gives
formally at least, for x<a
.2 , . df
lim fE(x)v (x) = lim EK-E_ A A—O(x) =0, (46)
x+0 x+0 -
for a sufficiently smooth fE -X(X) in (),x) 1in a neighbourhood of (0,0), since
fE -A(O+) = 0. (For further details see Ref. (3) and Batchelor's Ph.D. thesis.)
The last proposition gives for the Coulomb problem:
PROPOSITION 3
: . . . 2
For the radial ground state diffusion for the Coulomb potential V = -Ze /[§|
r/a
E(r_(a) = a a+is yax rea) 7
r o X 2 =
ala 2x
o
and
a/a
2 ° 1, 2x
E(t_(a)) = a {—=(e -1 -2x) - 1}dx (r=<a), (48)
r o 2x2

J
r/ao



a = 1/ze? being the Bohr radius. Further

E(Tr(a)|r € (a,®) 1is distributed according to quantum mechanical ground state

distribution)

2 -
=a x + 1 + 2i)2e 2% i (49)

a/aO
and
E(Tr(a)lr € (0,a) 1is distributed according to quantum mechanical ground state

distribution)

a/a
2 O{sinhx
o X

(1 +x)e ¥} ax. (50)

The question arises as to whether one can check any of the above results
experimentally. Here we reiterate an idea in Ref. (9).

A Possible Experimental Test

If you replace the negatively charged electron in the hydrogen atom by a
negatively charged pion m , the m  feels only the Coulomb attraction due to the
positively charged proton p+ when at a distance exceeding h/mnc (the pion Compton
wavelength) from the nuclear proton. The reason is that the strong force governing
the decay pf+ﬂ_ »>n +y's 1is of extremely short range ~ h/mﬂc. Therefore the p+n_
system cannot decay until the m  first hits a sphere of radius h/mﬂC centred at
the nuclear proton.

Assume therefore that the w1  1is captured into the ground state. Then, if

stochastic mechanics gives the correct first hitting time, we obtain

©

3

: - 2 - -
Expected Decay Time for Ground State of p+w > 2h4 (x +1 +§%) e 2Xdx'v}O 18 secs.
m.e ez/ch
(51)
Experiment gives:
. + = =] 2
Expected Decay Time for p m < 10 secs,

which is consistent. This begs the question as to whether or not one can determine

the expected first hitting times for excited states.

Denote by a the first zero of the radial wave function for the first excited
»

: . 1 .
state for the Coulomb problem, i.e. the first zero of L], the Laguerre polynomial.



10

We let El(T(a)) denote E(rr(a)|re (a,aI ) is distributed according to the
b

1
probability distribution of the first excited state) and El(T(a)) the corresponding
expression for a diffusion initially distributed according to probability distribution
of first excited state on (0,a). Then the methods above yield:

PROPOSITION 4

5 ; : 2
For the first excited state for the Coulomb potential -Ze /Izl

2 1
- 8a _ -(2-p) ,
Il (t(a)) = —2 AL TR PR RN CF
(1=7e ], 1, (=0
o
and
2 a/2a
8a f o ¥
E'(t(a)) = —2 — L Eihe o d g™, (53)
(-7 ), -9 °

Further details of the above calculation are given in Batchelor's Ph.D. thesis.
It is clearly going to be very difficult to compute analogues of the above for the
nth excited state. We therefore resort to asymptotic methods. (See Refs. (5) and

(8)).

4. Asymptotic Results

th z ; -
The n excited state, with zero angular momentum, for the Coulomb problem

has radial wave-function

_ =X 1 2x _
fE(x) = X exp ((n-+])aO)LH((ﬂ-Fl)ao) n=20,1,2,... (54)
a = I/Ze2 being the Bohr radius, L; a Laguerre polynomial, the energy level
Zze4
E = B Sif—————y; The zeros of the Laguerre polynomial, labelled by a. in
T gyt ¢

increasing order, are unattainable points so internodal regions (ai s are

a. )
,n’ i+l n
non-communicating (see e.g. Ref, (1)). We work with wave-function fE on (0,31 n)
s
to find first hitting time of a~0 for each energy level En for zero angular
momentum.

We follow the methods of Mandl and Newell (see Refs. (5) and (8)) and seek a

y(a) +t as a+0, with



11

AT (a)
y(a)

1

lim E{exp( Y} = (), (55)

a+0
for each fixed A >0, That such a Yy exists can be seen from the results of the

last section.

From Eq. (35), since 1lim hE—A(x) = fE(x), for x >a, we obtain

A0
er(a) fE(a)
lim E{exp-———)} = lim —————~ (56)
a+0 v(a) av0 Np- (@)
y(a)
and from de 1'Hopital's rule
ATX(a) fé(a)
lim E{exP(——;TES_)} = 1lim @ (57)
’
at0 a+0 [;é_ A (a) - X%EE—U =O<a)1§£31
LY (@) #oW y*(a)
Hence, we obtain
ATx(a) -l
lim E{expC—F=—)} = (1 + 1) , (58)
240 y(a)
if y 1is defined to satisfy
'
ghE-u ()X (a)
du u=0 2
ALY (59)
£L(@) ’

The following is a minor extension of a result of Mandl and Newell (see Refs.
(5) and (8)).

PROPOSITION 5

For the radial Nelson diffusion corresponding to the nth eigenvalue E and
a a
I,n 2 )
eigenfunction fE , restricted to (O,a] n), y(a) = 2 fE (x) dx fE (y) dy
n ’ 0 n n

and for each fixed x

At_(a)

lim E{exp(———z———)} = (1 +2)

1
240 y(a)

Let us see why above <y 1is consistent with our Eq. (59). Firstly, if



AT_(a) _
lim E{exp(———f———)} = (1 + 1) ], for small A, it is necessary that, as a~0,
240 y(a)

dh dh
DEMa=0® HE (@)
y(a) ~ E{Tx(a)} = (0 + f(a) . (60)
E E
Therefore, our equation reduces to
r ’
) fE(a) R fE(a) as a~0 (61)
2 dh__ f.(a)(v(a) +c(x))’ ’
Y@ {E @ E
for a function c(x). Evidently this equation is incapable of determining the
al’n a ,
multiplicative constant 2 fE(X) dx. However, observe that +y(a) = fE (x) dx
)
gives 5 .
£ (a 2f 7 (a)f!(a £ a
Y'(a) _ E (a) o (a) E( ) _ E( ) a2
Y2<a) a a fE(a)Y(a)

-2 2 -2 .
(| £ 2| £.°(x) dxf"(a)

as it should, since fE(a) ~ 0. The multiplicative constant is determined by Eq. (60).

Formally then for the radial diffusion corresponding to the nth eigenfunction fE
n
-t/y,(a)
H’(rx(a) <t) ~1-e . (63)
a a
Lo 5 =3
where yn(a) =2 fE (x) dx fE (y) dy. The following proposition was
n n
0
discovered by Andrew Batchelor on the computer.
PROPOSITION 6
J
n 1,1
. . 2
lim 1im Y@ = L 3¢5 x)) ax, (64)
16 1
nto ay0 y (a) 0

j1 i being first zero of first Bessel function Iy
’

Further details are given in Refs. (2) and (3). Batchelor's computer
tabulation is given at the end of this paper. There is a corresponding proposition

for non-zero angular momentum states:



