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INTRODUCTION

The task of model theory is to investigate mathematical structures with the
aid of formal languoges. Classical model theory deals with algebraic struc-
tures. Topological model theory investigates topological structures. A to-
pological structure is a pair (#,0) consisting of an algebraic structure ¥
and a topology o on A, Topological groups and topological vector spaces are
examples, The formal language in the study of topological structures is Lt'
This is the fragment of the {monadic) second-order language (the set variab-
les ranging over the topology O) obtained by allowing quantification over
set variables in the form 3X(t & X A ¢), wheret is a term and the second-
order variable X occurs only negatively in ¢ (and dually for the vniversal
quantifier). Intuitively, Lt allows only quantifications over sufficiently

small neighborhoods of a point.

The reasons for the distinguished role that Lt plays in tepological model
theory are twofold. On one hand, many topological notions are expressible in
Lt' e.g. most of the freshman caleculus formulas as "continuity"

¥x YY(fx e Y =+ 3X(x € XA vz(z ¢ X » fz e Y))).
On the other hand, the expressive power is not too strong, so that a great
deal of classical model theory generalizes to Lt' For example, Lt satisfies
a compactness theorem and a Léwenheim-Skolem theorem. In fact, Lt is o maxi-
mal logic with these properties ("Lindstsm theorem").
While in the second part we study concrete Lt—theories, the first part
contains general model-theoretic results. The exposition shows that it is
possible to give a parallel treatment of classical and topological theory,
since in many cases the results of topological model theory are obtained

using refinements of classical methods. On the other hand there are many new
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problems which have no classical counterpart.
The content of the sections is the following.

§ 1 contains preliminaries.While second-order language is too rich to allow
a fruitful model theory, central theorems of classical model theory remain
true if we restrict to invoriant second-order formulas. Here © is called

invariant, if for all topological structures (%,0),
(4,0) F o iff (¥, 7) E @ holds for all bases T of o.

Many topological notions are invariant; e.g. "Hausderff", since when checking

the Housdorff property it suffices to look at the open sets of a basis.

In section 2 we introduce the language Lt; Lt-formulcs are invariant, later
on (§ 4) we show the converse: each invariant formula is equivalent to an

Lt-formulc. -

In section 3 we derive for Lt some results (compactness theorem, Léwenheim-
Skolem theorem,... ) which follow immediately from the fact that Lt may be

viewed as a two-sorted first-order language.

We generalize in section 4 the Ehrenfeucht-Fraissé characterization of ele-
mentary equivalence and the Keisler-Shelah ultrapower theorem. For this we
introduce for topological structures back and forth methods, which also will
be an important tool later on. In § 5 we prove the Lt interpolation theorem,
and derive preservation theorems for some relations between topological
structures. In particulaor, we characterize the sentenceswhich are preserved
by dense or open substructures. In § 6 we show that operations like the

product and sum operation on topological structures preserve Lt-equivalence.

Section 7 contains the Lt-definobility theory. Besides the problem of the
explicit definability of relations, which in classical model theory are sol-
ved by the theorems of Beth, Svenonius,... , there arises in topological

model theory olso the problem of the explicit definability of a topology.

In § 8 we first prove a Lindstrém-type characterization of Lt' - There are
natural languages for several other classes of second-order structures like
structures on uniform spaces, structures on proximity spaces. All these lan-
guages as well as Lt can be interpreted in the language Lm for monotone struc-

tures.
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The omitting types theorem fails for Lt; we show this in section 9, where we
dlso prove on omitting types theorem for a fragment of Lt' which will be use-
ful in the second port. The last section is devoted to the infinitary lang-
guage (Lw w)t' We generalize many results to this language showing that each
invariant Zl-sentence over (L w)2 is equivalent in countable topological
structures to a game sentence, whose countable approximations are in(L ) .-

waw' t
We remork that some results like Scott's isomorphism theorem do not genlru—

lize to (LwIw)t'

The second part can be read without the complete knowledge of the first
part. Essentially only §§ 1 - 4 are presupposed. The content of the sections

of the second part is the following:

§ 1 Topological spoces.

We investigate decidability of some theories and determine their (Lt-) ele-
mentaory types. For many classes of spaces, which do not share strong sepa-
ration properties like T3,the (Lt—)theory turns out to be undecidable. For
Ta-spaces not only a decision procedure is given, but also a complete des-
cription of their elementary types by certain invariants. As a byproduct we
get simple characterizations of the finitely axiomatized and of the No-cate—

gorical TS—spaces.

§ 2 Topological abelian groups.

Three theorems are proved:

1) The theory of all Hausdorff topological cbelian groups is hereditarily

undecidable.

2) The theory of torsionfree topological abelian groups with continuous

(partial) division by all natural numbers is decidable.

3) The theory of all topological abelian groups A for which nA is closed

and division by n is continuous is decidable.



§ 3 Topological fields.

We describe the Lt-elementary class of locally bounded topological fields
(and other related classes) as class of structures which are Lt-equivolent to
a topological field, where the filter of neighborhoods of zexo is generated
by the non-zero ideals ofa.proper local subring of K having K as quotient
field.

V-topologies correspond to valuation rings. This fact has some applications
in the theory of V-topological fields.~- Finally we give Lt-axiomatizations
of the topological fields R and C.

§ 4 Topological vector spaces.

We give a simple axiomatization of the Lt-theory of the class of locally
bounded real topological vector spaces. If we fix the dimension, then this

theory is complete.

The Lt-elementary type of o locally bounded real topological vector space V
with a distinguished subspaceH is determined by the dimensions of H, H/H
and V/H (where H denotes the closure of H). As an application we show that
the L ~theory of surjective ond continvous linear mappings (essentially)can
be axiomatized by the open mapping theorem.- Finally we determine the Lt-
elementary properties of structures (V,V',[ , ]), where V is a real normed

space, V' its dual space and [ , ] the canonical bilinear form.

The present book arose fom @ course in topological model theory given by
the second author at the University of Freiburg during the summer of 1977.
We have collected all references and historicol remarks on the results in

the text in separate sections at the end of the first and the second part.
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§ 1 Preliminaries

We denote similarity types by L,L',... . They are sets of predicate symbols
(p,Q,R,... ) and function symbols (f,g,... ). Sometimes O-placed function
symbols are called constants and denoted by c,d,... . - (¥,0) is called a

weak L-structure if 9 is an L-structure in the usual sense and ¢ is a non-

empty subset of the power set P(A) of A, If ¢ is a topology on A, we call

(¥,0) a topological structure.

By wa we denote the first-order language associated with L. It is obtained
by introducing (individual) variables WorWpreee forming terms and atomic
formulas as usual, closing under the logical operatiens of —,A,v,3 and V. =
and » will be regarded as abbreviations, x,y,... will derote variables. -

The (monadic) second-order language L2 is obtained from wa by adding the
symbol € and set variables WO,W1,... (denoted by X,Y,... ). New atomic for-
mulas t e X, wheretis a term of L, are allowed. A formation rule is added to

those of L :
ww
If ¢ is a formula so are 3Xp and vXp.

The meaning of a formula of L2 in a weak structure (Y,0) is defined in the
obvious way: quantified set variables range over c. (Note that we did not
introduce formulas of the form X = Y, however they are definable in L2.)
For the sentence of L2

®paue = VX vy x =y->3Xa¥(xe XAyeYayza(zeXaeY))),
and any topological structure (U,o), we have

(u,0) = Phaus iff o is a Hausdorff topology.

Similarly the notions of a regular, a normal or a connected topology are ex-

pressible in L2.

The logic L2 (using weak structures as models) is reducible to a suitable
(two sorted) first-order logic. Hence L2 satisfies central model-theoretic
theorems such as the compactness theorem, the completeness theorem and the

Léwenheim-Skolem theorem, e.g.

1.1 Compactness theorem. A set of L2—sentences has a weak model if every

finite subset does.



This is not true if we restrict to topological structures as models: For
cPd.iSC =\1x3XVy(ye X o y = X) ’
and any topological structure (¥,0), we have

(u,0) = Pdise iff o is the discrete topology on A
iff o = P(A).

Therefore, full monadic second-order logic is interpretable if we restrict
to topological structures. Hence the compactness theorem, the completeness
theorem and the Lswenheim-Skolem theorem do not longer hold. - In particular

there is no ¢ € L2 such that
(,0) mo iff o is a topology
holds for all weak structures (¥,c).
On the other hand to be the basis of o topology is expressible in L2: Let

cpbus=vx3Xxe XAavxvXvY{xe XA xeYo
3Z(x e ZAavz{z e 7> (z e X A z € Y)))).

Then
(a,0) & Pbas iff ¢ is basis of a topology on A,

In the next section we will make use of this fact, when we introduce a sub-
language of L2 which satisfies the basic modeltheoretic theorems even if we

restrict to topological structures.

For o c P(A), o #50", we denote by 5 the smallest subset of P(A) containing

¢ and closed under unions,
T = {Us[s c o}.

Hence

(u,0) Ppas iff T is a topology.

To prove that a function is continuous or thaet a topological space is Haus-~
dorff, it suffices to test or to look at the open sets of a basis. These
properties are "invariant for topologies" in the sense of the next defini-

tion.



1.2 Definition. Let ¢ be an L2-sentence.

(i) o is invariant if for all ¥,0):
(,0) Eo iff (W,9) E o

(ii) ¢ is invariant for topologies if for all (2,0) such that 5 is a

topology,
(W,o) meo iff (@,9)F o.

Each invariant sentence is invariant for topologies. Note that ¢ is invariant
for topologies if and only if for all topological structures (,7) and any

basis ¢ of T one has
(U,0) =@ iff ,7) ko,

Each sentence of the sublanguage Lt of L2 that we introduce in the next sec-
tion is invariant. Later on we will show the converse: Each invariant (in-
variant for topologies) L2-sentence is equivalent (in topological structures)

to an Lt-sentence.

1.3 Exercise. (a) Show that the notions "Huousdorff", "regular", "discrete"
may be expressed by L2—sentences that are invariont for toplogies.

(b) For unary f e L, VX Vx(x ¢ X 3¥(fx e Y A Vy(y € Y > 3z € X fz = ¥)))
is a sentence invariant for topologies expressing that f is an open map.
(c) For unary P e L, 3X Vy(y € X @ Py) is o sentence not invariant for
topologies. In topological structures it expresses that P is open (but see
2.5 (b)).

(d) Give an example of an L2-sentence invariant for topologies that is not

invariant.

1.4 Exercise. (Hintikka sets and term models). Suppose L is given. Let C

be a countable set of new constants and U a countable set of "set constants™.
Denote by L(C,u)2 the language defined as (L u C)2 but using the additional
atomic formulas t ¢ U (for U e u). Basic terms are the terms of the form
fc.l,...cn (with ClresesCy e C) and the constants in C. Let O be a set of
L(C,u)z-sentences in negation normal form (for o definition see the beginning

of the next section). 0 is said to be a Hintikka set iff (1) - (x) hold:



(1) For each atomic ¢ of the form € = €y Rc]...cn or ¢ € U (where

c;iC € C and U € U) either ¢t or mp& Q.
(ii) If @ APy €0 then 9 €0 and Py € Q.

(iii) If P Vg, €0 then 9 €0 or g, € Q.

(iv) If ¥x 9 € 0 then for all ¢ e C, w& € Q0.
(v) If 3x ¢ € O then for some c ¢ C, w& € N.
(vi) If VX o € 0 then for all U e U, cp% € Q.

(vii) If 3X ¢ € 0 then for some U e U, wl-J' € 0.
@ X

(viii) Forall ceC, c=c € Q.
(ix) If t is a basic term, then for some c ¢ C, t = c € Q.

(x) If ¢ is atomic or negated atomic and t is a basic term such that for

some ¢ € C and some variable x, t = ¢ ¢ , and wf € ), then m& € Q.

(wi and similarly m%, is obtained by replacing each free occurence of x in
o by t).
Suppose N is a Hintikka set. For C1sCy € C, let

¢y ~ S iff ¢ =S € Q.
Show that ~ is an equivalence relation. Let © be the equivalence class of c.
Define an L-structure (9,0) by

A= {Elc € Q},

U= - .
for n-ary R e L, R CqeeeCp iff Rc]...cn €0

for n-ary f e L, f”(21,...,2n) = c iff fc]...cn =ceQ
o = {0]U € u} where U = {¢|"c € U" ¢ q}.
Show: (a) For atomic ¢ of the form Rc1...cn,fc1...cn =¢ ¢ =cy orce u,

one has: (u,0) B o iff ® € Q.
(when interpreting ¢ by ¢ and U by U).

(b) (u,0) & Q.
(%,0) is called the term model of Q.



§ 2 The Language Lt

An L2-formulu is said to be in negation normal form, if negation signs in it

occur only in front of atomic formulas. Using the logical rules for the ne-
gation we can assign canonically to any formula ¢ its negation normal form,

a formula in negation normal form equivalent to .

An L2—formulu @ is positive (negative) in the set variable X if each free

occurence of X in ¢ is within the scope of an even (odd) number of negation sym-
bols. Equivalently, ¢ is positive (negative) in X, if each free occurence

of X in the negation normal form of ¢ is of the form t e X where t € X is not
preceded by a negation symbol (is of the form —t e X). Note that for any

X, which is not a free veriable of ¢, ¢ is both, positive and negative in X.

The formula

IXoteX v (ceX A —nce¥Y A 3ylyeX Aye Y))
is positive in X and neither positive nor negative in Y,

We use w(x],...,xn,X1,...,Xr) to denote a formula ¢ whose free variables
ore among the distinct variables x;,...,x_and whose free set variables are
1 n

among the distinct set variables X1""’Xr' - A simple induction shows

2.1 Lemma. Let w(x1,...,xn,X],...,Xr,Y) be an L2-formula, (4,0) a weak struc-
ture, Qyreeesa € A and U],...,Ur,U c A,
Assume (mlc) F CP[Q-Il°°-l°nlU1l°--rUrlU]°
(a) If @ is positive in Y, then (¥,0) kB w[ul,...,un,U],...,Ur,V] for any
V such that Uc Vc A,

(b) If ¢ is negative in Y, then (¥,0) R m[a1,...,an,U1,...,Ur,V] for any
V such that Vc U,

In the sequel we use for sequences like Uyseeep0 O U.|,...,Ur the abbre-
viations a,U.

2.2 Definition. We denote by Lt the set of L2—formulas obtained from the

atomic formulas of L2 by the formation rules of wa and the rules:
(i) If t is a term ond ¢ is positive in X, then vX(t ¢ X » w) is a formula.

(ii) If t is a term and ¢ is negative in X, then X(t e X A ¢) is a formula.



We abbreviate VX(t € X » @) and 3IX(t € X A ) by VX 5 t ¢ resp. 3X 5 t g.
For example,

bas = Vx 3 x Vx VX3 x Wo x 37 xVz(z e Z5 (ze X A zeY))
is an Lt-sentence.
Note that if X is free in a subformula ¢ of an Lt-sentence then either ¢ is
positive or negative in X, For an Lt-Formulu ¢ the notation
cp(x.l,...,xn,XT,...,X:,Y;,...,Y;) expresses that ¢ is positive in X]""’Xr
and negative in Y]""'Ys'

2.3 Theorem. Lt-sentences ore invariant.

Proof. For given (u,0) one shows by induction on ¢:

if oz, XY, Y7) ¢ Ly, e A, U,V c A, then

(w,0) = ola, 0, V] iff  (0,5) k ola,u,v] .

We only treat the case ¢ = 3X 3 t §. Set a, = t”[E].
Assume (%,0) E cp[a,G,\-/]. Choose V ¢ g such that a € Vand (3,0) E ;p[E,lTJ,V,V]
By induction hypothesis, (u,3) & w[E,U,\-/,V]. Hence, (4,3) E cp[?:,l-J,V]. - Now
suppose (¥,5) ola,U,V]. Let V ¢ G be such that a, ¢ Vand (,5) E \u[a,L_J,\-;,V_L
By induction hypothesis, (,q) E w[E,G,\?,V]: Since V € 5, there is a V' ¢ g
such that a € V' c V. ¢ is negative in X because 3X> t ¢ € L't' Thus by
2-11 (9110') E w[alﬁlvlv‘]l hence (ulU) E CP[apU:\_/]-

2.4 Corollary. Suppose that o and o, are bases of the same topology on

A,'&'.I = 8’2. Let ¢ be an Lt—sentence. Then

(91,01) E o iff (91,02) Eo.

The properties "Hausdorff", "regular", "discrete" and "trivial" of topologies
may be expressed by Lt—sentences (though the sentences Phaus and ®4isc of

the last section are not in Lt):

haus = Vx Vy (x =y vIXa x I¥a yVz - (z e X A z € Y))

reg =Vx VX3 x3¥s xVy (ye XviWa yVz (mzeWvazeY))
disc = Vx 3X 3 x Vy (y e X y = x)

triv = Vx VX3 x Vy y e X .

For an n-ary function symbol f € L the continuity of f is expressed in Lt by



= Vxgeaa¥Vx_ VYD fxoooux 3X. 3 x
n n 1

1 1
Vy1...Vyn(y1 € XjAeaony, € X o fyjoouy e Y),

ceedX 2 x
1 n n

i.e. one has for all topological structures (u,0)

(u,0)E @ iff fA is a contiruous map from A" to A
(where A" carries the product topolog ).
y

The class of topological groups and the class of topological fields are axio-
matizable in L, ; for example, if L = {',_1,e} then the topological groups aore
just the structures which are models of the group axioms and the sentences

. . -1, .
" + is continuous"”,and " is continuous".

By topological model theory (or topological logic) we understand the study

of topological structures using the formal language Lt (ond variants of Lt)'

2.5 Exercise. (o) Show that for unary f € L, "f is an open map" may be ex-
pressed in Lt (compare 1.3 (b)).

(b) Show that for unary P e L, "P is open" may be expressed in Lt (compare

1.3 (¢)).
(c) Show that for ¢ € Lt there is a | € wa such that for all topological

structures (9,0) with (9,0) £ disc one has:

(ulc) Eo iff AFEY

Similarly for models of triv.

§ 3 Beginning topological model theory

Using the invariance of the sentencesof Lt one can derive many theorems for
topological logic from its classical onalogues. This section contains some

examples.

Given @ u{y} < L2 we write ® E ¢ resp. ® k£ ¢ if each weak structure resp.

topological structure that is a model of & is a model of ¢.

3.1 Lemma. Suppose ® u {9} < Lt'
(a) @ has a topological model iff & u {225} has a weak model.

(b) ¢k, © iff § v {bas} ko



