Stephen Simons

From Hahn-Banach
to Monotonicity

Lecture Notes in Mathematics

1693

Second Edition

g N
AANRRRANLANY, AENAASAANNY
SANARANNLANN, AANARAARARAANAAY

@ Springer



Stephen Simons

From Hahn-Banach
to Monotonicity

2nd, expanded edition

@ Springer



Stephen Simons

Department of Mathematics
University of California

Santa Barbara, CA 93105-3080
USA

simons @math.ucsb.edu
http://www.math.ucsb.edu/~simons

Ist edition 1998 LNM 1693: Minimax and Monotonicity

ISBN 978-1-4020-6918-5 e-ISBN 978-1-4020-6919-2

DOI 10.1007/978-1-4020-6919-2

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2007942159

Mathematics Subject Classification (2000): 46A22, 49135, 47N 10, 49152, 47THOS

(© 2008 Springer Science + Business Media B.V., 1998 Springer-Verlag Berlin Heidelberg

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: WMXDesign GmbH

Printed on acid-free paper

987654321

springer.com



For Jacqueline,
whose support and patwnce

are



Preface

A more accurate title for these notes would be: “The Hahn—Banach—Lagrange
theorem, Convex analysis, Symmetrically self-dual spaces, Fitzpatrick func-
tions and monotone multifunctions”.

The Hahn-Banach-Lagrange theorem is a version of the Hahn-Banach
theorem that is admirably suited to applications to the theory of monotone
multifunctions, but it turns out that it also leads to extremely short proofs of
the standard existence theorems of functional analysis, a minimax theorem, a
Lagrange multiplier theorem for constrained convex optimization problems,
and the Fenchel duality theorem of convex analysis.

Another feature of the Hahn-Banach-Lagrange theorem is that it can be
used to transform problems on the existence of continuous linear functionals
into problems on the existence of a single real constant, and then obtain a
sharp lower bound on the norm of the linear functional satisfying the required
condition. This is the case with both the Lagrange multiplier theorem and
the Fenchel duality theorem applications mentioned above.

A multifunction from a Banach space into the subsets of its dual can, of
course, be identified with a subset of the product of the space with its dual.
Simon Fitzpatrick defined a convex function on this product corresponding
with any such multifunction. So part of these notes is devoted to the rather
special convex analysis for the product of a Banach space with its dual.

The product of a Banach space with its dual is a special case of a
“symmetrically self-dual space”. The advantage of going to this slightly
higher level of abstraction is not only that it leads to more general results
but, more to the point, it cuts the length of each proof approximately in
half which, in turn, gives a much greater insight into the nature of the pro-
cesses involved. Monotone multifunctions then correspond to subsets of the
symmetrically self-dual space that are “positive” with respect to a certain
quadratic form.

We investigate a particular kind of convex function on a symmetrically
self-dual space, which we call a “BC—function”. Since the Fitzpatrick function
of a maximally monotone multifunction is always a BC—function, these BC—
functions turn out to be very successful for obtaining results on maximally
monotone multifunctions on reflexive spaces.
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The situation for nonreflexive spaces is more challenging. Here, it turns
out that we must consider two symmetrically self-dual spaces, and we call
the corresponding convex functions “BC-functions”. In this case, a number
of different subclasses of the maximally monotone multifunctions have been
introduced over the years we give particular attention to those that are
“of type (ED)”. These have the great virtue that all the common maximally
monotone multifunctions are of type (ED), and maximally monotone multi-
functions of type (ED) have nearly all the properties that one could desire.
In order to study the maximally monotone multifunctions of type (ED), we
have to introduce a weird topology on the bidual which has a number of very
nice properties, despite that fact that it is not normally compatible with its
vector space structure.

These notes are somewhere between a sequel to and a new edition of [99].
As in [99], the essential idea is to reduce questions on monotone multifunc-
tions to questions on convex functions. In [99], this was achieved using a
“big convexification” of the graph of the multifunction and the “minimax
technique” for proving the existence of linear functionals satisfying certain
conditions. The “big convexification” is a very abstract concept, and the anal-
ysis is quite heavy in computation. The Fitzpatrick function gives another,
more concrete, way of associating a convex functions with a monotone multi-
function. The problem is that many of the questions on convex functions that
one obtains require an analysis of the special properties of convex functions
on the product of a Banach space with its dual, which is exactly what we do
in these notes. It is also worth noting that the minimax theorem is hardly
used here.

We envision that these notes could be used for four different possible
courses/seminars:

e An introductory course in functional analysis which would, at the same
time, touch on minimax theorems and give a grounding in convex Lagrange
multiplier theory and the main theorems in convex analysis.

e A course in which results on monotonicity on general Banach spaces are
established using symmetrically self-dual spaces and Fitzpatrick functions.
e A course in which results on monotonicity on reflexive Banach spaces are
established using symmetrically self-dual spaces and Fitzpatrick functions.
e A seminar in which the the more technical properties of maximal mono-
tonicity on general Banach spaces that have been established since 1997 are
discussed.

We give more details of these four possible uses at the end of the introduction.

I would like to express my sincerest thanks to Heinz Bausckhe, Patrick
Combettes, Michael Crandall, Carl de Boor, Radu Ioan Bot, Juan Enrique
Martinez-Legaz, Xianfu Wang and Constantin Zalinescu for reading prelimi-
nary versions of parts of these notes, making a number of excellent suggestions
and, of course, finding a number of errors.
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Of course, despite all the excellent efforts of the people mentioned above,
these notes doubtless still contain errors and ambiguities, and also doubtless
have other stylistic shortcomings. At any rate, I hope that there are not too
many of these. Those that do exist are entirely my fault.

Stephen Simons
September 23, 2007
Santa Barbara
California
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Introduction

These notes fall into three distinct parts. In Chapter I, we discuss the “Hahn—
Banach-Lagrange theorem”, a new version of the Hahn-Banach theorem,
which gives very efficient proofs of the main existence theorems in functional
analysis, optimization theory, minimax theory and convex analysis. In Chap-
ter II, we zero in on the applications to convex analysis. In the remaining five
chapters, we show how the results of the first two chapters can be used to
obtain a large number of results on monotone multifunctions, many of which
have not yet appeared in print.

Chapter I: The main result in Chapter I is the “Hahn-Banach-Lagrange”
theorem, which first appeared in [103]. We prove this result in Theorem 1.11,
discuss the classical functional analytic applications in Section 2 (namely
the “Sandwich theorem” in Corollary 2.1, the “extension form of the Hahn—
Banach theorem” in Corollary 2.2, and the “one dimensional form of the
Hahn-Banach theorem” in Corollary 2.4) and give an application to a clas-
sical minimax theorem in Section 3. In Section 4, we introduce the results
from classical Banach space theory that we shall need. In Section 5, we prove,
among other things, a minimax criterion for a subset of a Banach space to
be weakly compact using the concepts of “excess” and “duality gap”. The
contents of this section first appeared in [102].

In Section 6, we give a necessary and sufficient condition for the existence
of Lagrange multipliers for constrained convex optimization problems (gener-
alizing the classical sufficient “Slater condition”), with a sharp lower bound
on the norm of the multiplier. We also prove a similar result for Karush-
Kuhn—Tucker problems for functions with convex Gateaux derivatives. Some
of the results on Lagrange multipliers first appeared in [104]. In the flowchart
below, we show the dependencies of the sections in Chapter I. We note, in
particular, that Section 6 does not depend on Sections 2-5.

/
1] &—[2] —[4]
6]



2 Introduction

Chapter II: As explained above, Chapter II is about convex analysis. We
start our discussion in Section 7 by using the Hahn-Banach-Lagrange theorem
to obtain a necessary and sufficient condition for the Fenchel duality theorem
to hold for two convex functions on a normed space, with a sharp lower bound
on the norm of the functional obtained. (Incidentally, this approach avoids
the aggravating problem of the “vertical hyperplane” that so destroys the
elegance of the usual approach through the Eidelheit separation theorem.)
This sharp version of the Fenchel duality theorem is in Theorem 7.4, and it is
explained in Remark 7.6 how the lower bound obtained is of a very geometric
character.

While the concept of Fenchel conjugate is introduced in Section 7 with
reference to a convex function on a normed space, in fact this causes no end
of confusion when dealing with monotone multifunctions on a nonreflexive
Banach space. The way out of this problem (as has been observed by many
authors) is to define Fenchel conjugates with respect to a dual pair of spaces.
This is what we do in Section 8, and it enables a painless transition to the
locally convex case. As we will see in Section 22, this is exactly what we
need for our discussion of monotone multifunctions on a nonreflexive Banach
space. We present a necessary and sufficient condition for the Fenchel duality
theorem to be true in this sense in Theorem 8.1, and in Theorem 8.4 we
present a unifying sufficient condition that implies the results that are used
in practice, the versions due to Rockafellar and Attouch—Brezis. Theorem 8.4
uses the binary operation © defined in Notation 8.3.

In Section 9, we return to the normed case and give some results of a more
numerical character, in which we explore the properties of the function |- ||2.
These results will enable us to give a precise expression for the minimum norm
of the resolvent of a maximally monotone multifunction on a reflexive Banach
space in Theorem 29.5.

We bootstrap Theorem 8.4 in Section 10, and obtain sufficient conditions
for the “inf-convolution” formula for the conjugate of a sum to hold, and give
as application in Corollary 10.4 a consequence that will be applied in Theorem
21.10 to the existence of autoconjugates in SSDB spaces. This bootstrapping
operation exhibits the well known fact that results on the conjugate of a sum
are very close to the Fenchel duality theorem. However, these concepts are
not interchangeable, and in Section 11 we give examples which should serve
to distinguish them (giving examples of the failure of “stability” in duality).

In Section 12, we introduce the concepts of the biconjugate of a convex
function, and the Fenchel-Moreau points of a convex function on a locally
convex space. We deduce the Fenchel-Moreau formula in Corollary 12.4 in
the case where the function is lower semicontinuous. Some of these results
first appeared in [103].

We collect together in Sections 13 and 14 various results on convex func-
tions that depend ultimately on Baire’s theorem. The “dom lemma”, Lemma
13.3, is a generalization to convex functions of the classical uniform bounded-
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ness (Banach Steinhaus) theorem (see Remark 13.6) and the “©-theorem”,
Theorem 14.2 (which uses the operation © already mentioned) is a gener-
alization to convex functions of the classical open mapping theorem (see
Remark 14.4). Both of these results will be applied later on to obtain re-
sults on monotonicity. We can think of the dom lemma and the ©-theorem
as “quantitative” results, since their main purpose is to provide numerical
bounds. Associated with them are two “qualitative” results, the “dom corol-
lary”, Corollary 13.5, and the “©-corollary”, Corollary 14.3, from which the
numerics have been removed. The 6&-corollary will also be of use to us later
on. In Remark 14.5, we give a brief discussion of convex Borel sets and func-
tions.

In Theorem 15.1, we show how the ©-theorem leads to the Attouch-—
Brezis version of the Fenchel duality theorem, which we will use (via the
local transversality theorem, Theorem 21.12, and Theorem 30.1) to prove
various surjectivity results, including an abstract Hammerstein theorem; and
in Theorem 16.4 we obtain a bivariate version of the Attouch-Brezis theorem,
which we will use in Theorem 24.1 (via Lemma 22.9) and in Theorem 35.8
(a result that is fundamental for the understanding of maximally monotone
multifunctions on nonreflexive Banach spaces). This bivariate version of the
Attouch-Brezis theorem first appeared in [109].

Chapter III: In Chapter III, we will discuss the basic result on monotonic-
ity. Section 17 starts off with a conventional discussion of multifunctions,
monotonicity and maximal monotonicity. Remark 17.1 is a bridge in which
we show that if E is a Banach space then there is a vector space B and a
quadratic form q on B such that if S: E = E* is a multifunction then there is
a subset A of B such that S is monotone if and only if b,c € A = ¢q(b—c) > 0.
Actually B = E x E* and A = G(S), but this paradigm leads to a strict gen-
eralization of monotonicity, in which the proofs are much more concise.

In Section 18, we digress a little from the general theory in order to give
a short proof of Rockafellar’s fundamental result that the subdifferential of
a proper convex lower semicontinuous function on a Banach space is max-
imally monotone. In Theorem 18.1 and Theorem 18.2, we give the formula
for the subdifferential of the sum of convex functions under two different
hypotheses, in Corollary 18.5 and Theorem 18.6, we show how to deduce
the Brgndsted—Rockafellar theorem from Ekeland’s variational principle and
the Hahn-Banach-Lagrange theorem, and then we come finally to our proof
of the maximal monotonicity of subdifferentials in Theorem 18.7, which is
based on the very elegant one found recently by M. Marques Alves and B. F.
Svaiter in [60]. We also give in Corollary 18.3 and Theorem 18.10 two results
about normal cones that will be useful later on. Readers who are familiar
with the formula for the subdifferential of the sum of convex functions and
the Brgndsted-Rockafellar theorem should be able to understand this section
without having to read any of the previous sections.
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We return to our development of the general theory in Sections 19-21.
In Section 19, we introduce the concept of a SSD (symmetrically self-dual)
space, a nonzero real vector space with a symmetric bilinear form which sep-
arates points. This bilinear form defines a quadratic form, g, in the obvious
way. In general, this quadratic form is not positive, but we isolate certain
subsets of a SSD space that we will call “g—positive”. Appropriate convex
functions on the SSD space define g—positive sets. We zero in on a subclass
of the convex functions on a SSD space which we call “BC—functions”. Crit-
ical to this enterprise is the self-dual property, because the conjugate of a
convex function has the same domain of definition as the original convex
function. Lemma 19.12 contains an unexpected result on BC—functions, but
the most important result on BC—functions is undoubtedly the transversality
theorem, Theorem 19.16, which leads (via Theorem 21.4) to generalizations
of Rockafellar’s classical surjectivity theorem for maximally monotone mul-
tifunctions on a reflexive Banach space (see Theorem 29.5) together with a
sharp lower bound on the norm of solutions in terms of the Fitzpatrick func-
tion (see Theorem 29.6), and to sufficient conditions for the sum of maximally
monotone multifunctions on a reflexive Banach space to be maximally mono-
tone (see Theorem 24.1). Section 19 concludes with a discussion of how every
g-positive set, A, gives rise to a convex function, @4 (this construction is an
abstraction of the construction of the “Fitzpatrick function” that we will con-
sider in Section 23). In Section 20, we introduce maximally g-positive sets,
and show that the convex function determined by a maximally g—positive set
is a BC—function.

In Section 21, we introduce the SSDB spaces, which are SSD spaces with
an appropriate Banach norm. Roughly speaking, the additional structure
that SSDB spaces possess over SSD spaces is ultimately what accounts for
the fact that maximally monotone multifunctions on reflexive Banach spaces
are much more tractable than maximally monotone multifunctions on gen-
eral Banach spaces. That is not to say that the SSD space determined by
a nonreflexive Banach space does not have a norm structure, the problem
is that this norm structure is not “appropriate”. Apart from Theorem 21.4,
which we have already mentioned, the other important results in this section
are Theorem 21.10 on the existence of autoconjugates, Theorem 21.11, which
gives a formula for a maximally g-positive superset of a given nonempty
g-positive set, and the local transversality theorem, Theorem 21.12, which
leads ultimately to a number of surjectivity results, including an abstract
Hammerstein theorem in Section 30.

We start considering in earnest the special SSD space E x E* (where E
is a nonzero Banach space) in Section 22. We first prove some preliminary
results which depend ultimately on Rockafellar’s version of the Fenchel du-
ality theorem introduced in Corollary 8.6. It is important to realize that,
despite the fact that E is a Banach space, we need Corollary 8.6 for locally
convex spaces since the topology we are using for this result is the topology
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7, |(E) x w(E*,E) on E x E*. Theorem 22.5 has a precise description of the
projection on E of the domain of the conjugate of a proper convex function
on E x E* in terms of a related convex function on E. In Theorem 22.8, we
establish the equality of six sets determined by certain proper convex func-
tions on F X E*, and in Lemma 22.9 we prove a result which will be critical
for our treatment of sum theorems for maximally monotone multifunctions
in Theorem 24.1.

In Section 23, we show how the concepts introduced in Sections 19-21
specialize to the situation considered in Section 22. The g—positive sets intro-
duced in Section 19 then become the graphs of monotone multifunctions, the
maximally g—positive sets introduced in Section 20 then become the graphs
of maximally monotone multifunctions, and the function @4 determined by
a g—positive set A introduced in Section 19 becomes the Fitzpatrick function,
g, determined by a monotone multifunction S. The Fitzpatrick function was
originally introduced in [42] in 1988, but lay dormant until it was rediscovered
by Martinez-Legaz and Théra in [63] in 2001.

This is an appropriate place for us to make a comparison between the
analysis presented in these notes with the analysis presented in [99]. In both
cases, the essential idea is to reduce questions on monotone multifunctions
to questions on convex functions. In [99], this was achieved using a “big con-
vexification” of the graph of the multifunction and the “minimax technique”
for proving the existence of linear functionals satisfying certain conditions.
This technique is very successful for working back from conjectures, and
finding conditions under which they hold. On the other hand, the “big con-
vexification” is a very abstract concept, and the analysis is quite heavy in
computation. Now the Fitzpatrick function gives another way of associating
a convex functions with a monotone multifunction, and this can also be used
to reduce questions on monotone multifunctions to questions on convex func-
tions. The problem is that many of the questions on convex functions that
one obtains require an analysis of the special properties of convex functions
on E x E*. This is exactly the analysis that we perform in Section 22, and
later on in Section 35. As already explained, the SSD spaces introduced in
Sections 19-21 give us a strict generalization of monotonicity. More to the
point, the fact that the notation is more concise enables us to get a much
better grasp of the underlying structures. A good example of this is Theorem
35.8, a relatively simple result with far-reaching applications to the classifica-
tion of maximally monotone multifunctions on nonreflexive spaces. Another
example is provided by Section 46 on maximally monotone multifunctions
with convex graph.

We now return to our discussion of Section 23. We also introduce the
“fitzpatrification”, S, of a monotone multifunction, S. This is a multifunc-
tion with convex graph which is normally much larger than the graph of S.
S, is, in general, not monotone, but it is very useful since its use shortens
the statements of many results considerably. The final result of this section,
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Lemma 23.9, will be used in our discussion of the sum problem in Theorem
24.1 and the Brezis—Haraux condition in Theorem 31.4.

In Section 24, we give sufficient conditions for the sum of maximally
monotone multifunctions to be maximally monotone. These results will be ex-
tended in the reflexive case in Section 32, and we will discuss the nonreflexive
case in Chapter VII.

Chapter IV: In Chapter IV, we use results from Sections 4, 12, 18 and
23 to establish a number of results on monotone multifunctions on general
Banach spaces. Section 25 is devoted to the single result that a maximally
monotone multifunction with bounded range has full domain, and in Section
26, we prove a local boundedness theorem for any (not necessarily maximally)
monotone multifunction on a Banach space. Specifically, we prove that a
monotone multifunction, S, is locally bounded at any point surrounded by
D(S,).

In Section 27, we prove the “six set theorem”, Theorem 27.1, that if S
is maximally monotone then the six sets int D(S), int (co D(S)), int D(S,),
sur D(S), sur (co D(S)) and sur D(S,,) coincide, and its consequence, the “nine
set theorem”, Theorem 27.3, that, if sur D(S,) # 0, then the nine sets D(9),
coD(S), D(S,), int D(S), int (co D(S)), int D(S,), sur D(S), sur (co D(S))
and sur D(S,) coincide. (“Sur” is defined in Section 13.) The six set theorem
and the nine set theorem not only extend the results of Rockafellar that
int D(S) is convex and that, if int (co D(S)) # @ then D(S) is convex, but
also answer in the affirmative a question raised by Phelps, namely whether
an absorbing point of D(S) is necessarily an interior point. In Theorem 27.5
and Theorem 27.6, we give sufficient conditions that D(S) = D(S,) and
R(S) = R(S,) — these conditions do not have any interiority hypotheses.

Section 28 contains the results that if S is maximally monotone then the
closed linear hull of D(S,) is identical with the closed linear hull of D(S),
and the closed affine hull of D(S,,) is identical with the closed affine hull of
D(S). The arguments here are quite simple, which is in stark contrast with
the similar question for closed convex hulls. This section also contains some
results for pairs of multifunctions, which will be used in our analysis of boot-
strapped sum theorems for reflexive spaces in Section 32. We also give some
results on the “restriction” of a monotone multifunction to a closed subspace.
The results in this section depend ultimately on the result of Lemma 20.4 on
g—positive sets that are “flattened” by certain elements of a SSD space.

Chapter V: Chapter V is concerned with maximally monotone multifunc-
tions on reflexive Banach spaces. In Section 29, we use the theory of SSDB
spaces developed in Section 21 to obtain various criteria for a monotone
multifunctions on a reflexive Banach space to be maximally monotone. We
deduce in Theorem 29.5 and Theorem 29.6 Rockafellar’s surjectivity theo-
rem, together with a sharp lower bound on the norm of solutions in terms
of the Fitzpatrick function. Theorem 29.8 contains an expression for a max-



