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Preface

This book aims to give a systematic and self-contained introduction to the
theory of symplectic Dirac operators and to reflect the current state of the
subject. At the same time, it is intended to establish the idea that symplec-
tic spin geometry and symplectic Dirac operators may give valuable tools in
symplectic geometry and symplectic topology, which have become important
fields and very active areas of mathematical research.

The basic idea of symplectic spin geometry goes back to the early 1970s,
when Bertram Kostant introduced symplectic spinors in order to give the
construction of the half-form bundle and the half-form pairings in the context
of geometric quantization [37]. During the next two decades, however, almost
no attention has been given to a closer study of symplectic spin geometry
itself.

In 1995, the first author introduced symplectic Dirac operators [24] and
started a systematical investigation [25, 26, 27]. These symplectic Dirac oper-
ators are called Dirac operators, since they are defined in an analogous way as
the classical Riemannian Dirac operator known from Riemannian spin geom-
etry (cf. e.g. [21]). They are called symplectic because they are constructed by
use of the symplectic setting of the underlying symplectic manifold. All tools
which were necessary for that construction have already been known and ac-
cepted, mainly in mathematical physics. These are the symplectic Clifford
algebra (also known as Weyl algebra), the metaplectic group, the metaplectic
representation (Segal-Shale—Weil representation) acting on L?(IR™), metaplec-
tic structures, and symplectic connections.

One of the basic ideas in differential geometry is that the study of analytic
properties of certain differential operators acting on sections of vector bundles
vields geometric and topological properties of the underlying base manifold.
There are several classical results in that direction. An example is Hodge-
de Rham theory. Here, one considers the Hodge-Laplace-Beltrami operator A
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acting on differential forms. This operator is one of the most studied operators
in global Riemannian geometry and his spectrum gives important topological
invariants. In particular, the dimension of the kernel of A on p-forms over a
closed Riemannian manifold is the p-th Betti number. Other well known and
well studied operators are the Kodaira- Hodge Laplace operator on differen-
tial forms with values in a holomorphic vector bundle or the classical Dirac
operator on Riemannian manifolds. Now, symplectic spinor fields are sections
in an L?(R™")-Hilbert space bundle over a symplectic manifold and symplectic
Dirac operators, acting on symplectic spinor fields, are associated to the sym-
plectic manifold in a very natural way. Hence they may be expected to give
interesting applications in symplectic geometry and symplectic topology.

It is our opinion that, besides the already stated, there are further close re-
lations to mathematical physics. Some steps towards this direction have been
made by the first author and Andreas Klein in [28, 29, 30].

Another perspective could be the extension of Clifford analysis and spin geom-
etry to super differential geometry. According to the most used version of
super geometry developed by Bertram Kostant, geometrical structures over a
supermanifold consist of Zs-graded objects and thus have an even as well as
an odd part. Then one can imagine that a metric has to satisfy some kind of
eraded symmetry which, roughly speaking, corresponds to a symmetric object
on the even part as well as to a skew symmetric object on the odd part of the
supermanifold. For the first one, we have the classical Riemannian spin geom-
etry, whereas the second one is basically given by symplectic spin geometry.
The main aspects of that idea are treated in a paper by Frank Sommen [45].

Although the construction of symplectic Dirac operators follows the same
procedure as for the classical Riemannian Dirac operator, using the symplectic
structure of the underlying manifold instead of the Riemannian metric, there
are essential differences to the Riemannian case. These are caused by the fact
that the algebraic structure of the symplectic Clifford algebra is completely
different from that of Riemannian spin geometry. For the classical Clifford
algebra, we have the relation v? = —||v||?, whereas the algebraic structure of
the symplectic Clifford algebra is given by v-w — w - v = —wq(v,w). This
implies essentially different properties for the Clifford multiplications, which
enter into the definition of the Dirac operators.

Moreover, the non-compactness of the symplectic group leads to analytic dif-
ficulties. Namely, since the typical fiber of the symplectic spinor bundle is the
Hilbert space L?(R™), we deal with operators acting on sections of a vector
bundle of infinite rank. For elliptic formally self-adjoint pseudo-differential
operators with positive definite leading symbol acting on sections in a vector
bundle of finite rank, one has a completely developed theory. So, in order to
be able to apply these techniques, we are interested in equivariance properties
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of our operators with respect to a certain decomposition of the symplectic
spinor bundle into a series of subbundles of finite rank. It turns out that an
associated second order operator respects this decomposition provided that a
technical assumption, which always can be realized, holds true.

Let us now briefly describe the content of each chapter of this book. The first
chapter is introductory. It contains preliminaries and basic material needed
for our considerations. Chapter 2 is devoted to symplectic connections. In
particular, we introduce a further Ricci tensor, which we will call symplectic
Ricci tensor. To our knowledge, no attention has been given to this tensor in
previous studies. In fact, this symplectic Ricci tensor is a new object in the
case of non-vanishing torsion. To date, mostly only torsion-free symplectic
connections have been considered. It turns out that, in our context, it is
convenient to work also with symplectic connections with torsion and that the
symplectic Ricei tensor is more suitable for our purposes. The next chapter
introduces the symplectic spinor bundle and the spinor derivative and analyzes
a splitting property of the spinor bundle. In Chapter 4, we give the definition of
symplectic Dirac operators and describe in detail how these operators depend
on the objects from which they are built. Chapter 5 is concerned with an
associated second order operator of Laplace type and addresses properties of
this operator. The objective of Chapter 6 is the situation for a special class of
symplectic manifolds, namely Kéhler manifolds. Here, we also investigate the
example of CP!. The aim of Chapter 7 is to construct a Fourier transform for
symplectic spinor fields and to derive consequences for the symplectic Dirac
operators. The last chapter focuses on relations to mathematical physics, in
particular to quantization. This closes the circle to the beginnings by Bertram
Kostant.

The present text is originated in research ideas of the first author and provides
an extended version of her “Habilitationsschrift”, which was never published
separately. Starting with helpful discussions from the beginning of the inves-
tigations and proposing many improvements in the selection and presentation
of the material, the second author became more and more involved into the
subject. We decided to write this book tree years ago and, for this book, he
made a thorough revision of the material, in particular, to improve the strict-
ness of the presentation. Then it took time to compose it in a natural and
organic way. Furthermore, our working places are no longer as close to each
other as before and it became difficult to keep our discussions at its intensive
level. Now we consider the text ready for publication and hope to present the
reader a mature work.

During the work on the book, we received financial support from DFG, the
German Research Foundation, contract HA 3056/1-1,2. Many thanks are due
to our students Paul Rosenthal and Steffen Rudnick for proof-reading the
IXTEX-type-written manuscript.
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We dedicate this book to our daughter Karen. She accepts our mathematical
family circle and enriches it with her interest. We are grateful to being able
to give her an understanding of the fascination of mathematics. Karen, you
are a wonderful teenager which makes us enjoying the challenge of teaching
mathematics.

Gottingen and Greifswald, Katharina € Lutz Habermann
November 2004
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1

Background on Symplectic Spinors

This chapter serves two purposes. First it gives a survey on fundamental
relations between the symplectic Clifford algebra, the metaplectic group, and
its Lie algebra. The second is to provide several elementary facts used in the
later computations. Most of it is well known, but we have summarized the
material in a form that makes it applicable for our considerations.

1.1 Symplectic Group and Clifford Algebra

We consider the 2n-dimensional real vector space R*" equipped with its stan-
dard symplectic form wy. We write any v € R*" as

(VI>
VvV =
vl/

with vectors v/, v € R" and any 2n x 2n-matrix A as

ab
A —
( c d)
with n x n matrices a.,b,c.d. Let T be the unit element of the linear group
GL(n,R) and set

Then
wo(v.w) = (Jov,w) = (V. w") — (v, w')

for viw € R?", where ( , ) denotes the Euclidean inner product on R*" as
well as on R™. Hence the standard basis {ay, ..., F; T o TR b,} of R2" forms
a symplectic basis, which means that
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wg(aj,ak) = wg(bj,bk) =0 and w()(aj,bk) = 05k (1.1.1)

for jk=1,...,n.

The symplectic group Sp(n, R) is the group of all automorphisms of R?" which
preserve the symplectic form wg. That is, Sp(n,R) is the group of those A €
GL(2n,R) that satisfy

wo(Av, Aw) = wy(v, w)
for all v,w € R?", which is equivalent to
AT JoA = Jy

as well as

AJ()AT == ,]() .
In particular, Jy € Sp(n, R).

We denote the space of all symmetric real n x n-matrices by S(n) and set

D(n) = {(; ((J,T(;_l ta€ GL(n,R)}

N(n) = {(; ‘I’) be S(n)} |

Obviously, D(n) and N(n) are subgroups of Sp(n,R). Moreover, we have (cf.
[16])

and

Proposition 1.1.1 Sp(n,R) is generated by D(n) U N(n) U {Jo}. d

Identifying R?" with C" via v — v/ + iv”, the Hermitian inner product of
two vectors v, w € R?" is

(v,w) — iwg(v,w) .

Therefore, the intersection of Sp(n,R) with the orthogonal group O(2n) is the
unitary group U(n). One can prove (cf. [16])

Proposition 1.1.2 (1) U(n) is a maximal compact subgroup of Sp(n,R).
(2) Sp(n,R) is homeomorphic to the product U(n) x R+, |

Corollary 1.1.3 Sp(n,R) is connected and its fundamental group is 7.
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Proof. This follows from Proposition 1.1.2 and the corresponding properties
of U(n). a

The symplectic Lie algebra, i.e. the Lie algebra sp(n,R) of the symplectic
group Sp(n, R) is given by the space of all endomorphisms X of R?" satisfying

W()(/YV.W) + w(,(v. XW) =0

for all v.w € R?". We identify the space S?{R?") of symmetric 2-tensors of
[R?" with sp(n,R) by assigning to v; @ vo € S?(R?") the endomorphism

v € R?" — wy(v,vi)ve + wo(v, va)vy € R2"

Then we have

Lemma 1.1.4 For every X € sp(n.R), '

n

1 -
X=z ;(Xaj ®b; —a; ® Xb,) .

Proof. The assertion follows from

n

Z(w(,(v.Xaj)bA, + w()(v.bJ)Xaj — W()(V.aj)szJ = uJ()(V. ij)aj)

j=1
= (wo(Xv,bj)a; —wy(Xv,a,)b)
j=1
n
+X Z(W()(V. b]‘ )a(,v — W()(V. a_,-)bj)
j=1
=2Xv
for any v € R?". a

The Lie bracket of sp(n,R) now writes as

[V] Vo, V3 () V4] = *u)()(V-z.VA;)Vl & vy — W(j(Vg.Vg)Vl ) Vy

—wo(V1,vy) Ve O V3 —wo(Vi, V3)ve @ vy .

In matrix notation, the above identification is given by

, viovh+viovy —vi®vh—vi,®v]
VO vVy = (112)

" 1" " " ! " / "
Vi ®Vy +Vy ®WV] —V ®Vy —Vy XV

Here, x @ y for x,y € R™ means the endomorphism
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z€R" = (z,2)y e R™ .
Clearly, the endomorphism adjoint to x ® y is then

zeoy) =yox. (1.1.3)

Next we define the symplectic Clifford algebra, which is also referred to as
Weyl algebra. In contrast to the Riemannian case, this algebra is infinite
dimensional.

Definition 1.1.5 The symplectic Clifford algebra Cl(n) is the associative
unital algebra over R generated by R*™ with the relations

V-W—W-v=—wy(v,w)
for v,w € R?".

A basis of Cl(n) is formed by

)

o «,, 31 32 B
al .a2 .....a/n' .bl .b2 .o-oabn s

where a;, 3; are non-negative integers. According to Equation (1.1.1),
aj-ay =ag-a;, bj'bk:bk'ij and aj'bk—bk'aj:_5jk

for j,k=1,...,n.

As usual, we set
[v,w]=v -w—w-v

for v,w € Cl(n), which gives Cl(n) the structure of a real Lie algebra. Let
a(n) denote the subspace of Cl(n) which is spanned by v -w + w - v for
v,w € R?",

Lemma 1.1.6 The space a(n) is a Lie subalgebra of Cl(n) which is isomor-
phic to the symplectic Lie algebra sp(n,R).

Proof. Let v,vy,v € R?" and v € a(n). First we observe that

[Vi-Va, V] =V Vo V=V V]| Vy

ViV Ve +wo(V, Vo)V — V-V -V

wo(v,vi)ve + wo(v,va)vy

I

(Vi ®va)v.

Thus

[Vi-ve+va- vy, v] =2(vy ©®vy)v (1.1.4)

and
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[v,v] € R*™ . (1.1.5)

Further we have
ViV, v] = vy [Vo,v] + [vi, 0] - v
and hence

[Vi-va+va vy, v] = vy [ve,v] + [va,v] - vy

+vy - [V, 0]+ [vi,v] - v (1.1.6)

Equations (1.1.5) and (1.1.6) imply that a(n) is a Lie subalgebra of Cl(n).
From Equation (1.1.4) and the Jacobi identity, we get the second part of the
assertion. a

1.2 The Stone-von Neumann Theorem

In this section, we want to recall some facts of representation theory and
formulate the Stone-von Neumann theorem. This fundamental theorem will
be used in the next section to construct the metaplectic representation. For
details and proofs, we refer to [1, 16, 49].

Let G be a connected Lie group and let $ be a separable complex Hilbert
space. We endow the group GL($)) of invertible bounded linear operators
on $) with the strong topology. That means that a sequence (7}) in GL($)
converges to Ty if and only if the sequence (Tih) converges to Tyh for all
h e $.

Definition 1.2.1 A representation of G on $) is a continuous group homo-
morphismrt : G — GL($). It is called unitary if it maps into the unitary group
U(9) of 9.

Definition 1.2.2 Let v be a representation of G on $.
(1) A subspace L3 C $ is said to be r-invariant if
r(a)W C W

for all a € G.

(2) r is called irreducible if the only r-invariant closed subspaces of $ are {0}
and 9.

The following proposition is a version of Schur’s lemma.



6 1 Background on Symplectic Spinors

Proposition 1.2.3 A unitary representation v of G on ) is irreductble if and
only if the only bounded linear operators T : $ — $H such that

Tor(a)=r(a)oT

for all a € G are scalar multiples of the identaty. O

Let r be a fixed representation of G on $ and let H> denote the space of
smooth vectors of r, i.e. the set of all h € $ such that the map

a€G—r(a)heH

is smooth.
Theorem 1.2.4 (Garding) $H™ is a dense invariant subspace of . O

The differential of r is the homomorphism r, : g — End($>) from the Lie
algebra g of GG into the endomorphism algebra End($H>) of $> given by

1
t(X)h = —r(exp(tX))h
dt t=0
for X € g and h € $>. By Theorem 1.2.4, each operator r,(X) can be
considered as an unbounded operator on $).

Definition 1.2.5 Let v : G — U($H1) and vy : G — U($H2) be representa-
tions of G on Hilbert spaces $1 and $Ho. Then vy is said to be equivalent to vy
if there exists a bounded linear bijection T : $; — $Ho such that

Tori(a)=ry(a)oT

for all a € G. If, in addition, T can be chosen unitary, vy is called unitary
equivalent to vo.

Now we consider the Heisenberg group H(n) of R?" ie. H(n) = R?" x R with
group multiplication given by

(v,s) - (w,t) = (v +w,s+t+ %wo(v.w)> .

Setting

(rs(v, 5)f)(x) = eV A=VVID) f (g — v
for (v.s) € H(n), f : R" — C and x € R", we obtain a unitary representation
rs of H(n) on the Hilbert space L?(R™) of square integrable functions on R".
This representation, which is called Schrédinger representation, is irreducible.
Furthermore,

t5(0,8)f =e ¥ f

for any s € R and f € L2(R™). These properties turn out to be characteristic
for rg.
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Theorem 1.2.6 (Stone—von Neumann) Let v be an irreducible unitary
representation of the Heisenberg group H(n) on a separable complex Hilbert
space ) such that

t(0,8)h = e h

for all s € R and h € $. Then v is unitary equivalent to the Schrodinger
representation rs. g

1.3 Metaplectic Representation

In view of Corollary 1.1.3, the symplectic group Sp(n,R) has a unique con-
nected double cover Mp(n,R). This covering group is called metaplectic
group. Let p : Mp(n,R) — Sp(n,R) denote the covering homomorphism. By
Lemma 1.1.6, we may identify the Lie algebra mp(n,R) of Mp(n .'IR) with the
subalgebra a(n) of Cl(n) and think the differential p, : mp(n,R) — sp(n,R)
of p to be realized by the homomorphism given in the proof of this lemma. So

ps(V)v = [v,v] (1.3.1)

and
p(V-wWHwW-v)=2veOw (1.3.2)

for v € mp(n.R) and v.w € R?". The inverse of p. is explicitly described by

Lemma 1.3.1 For every X € sp(n,R),

n

_ 1
Py 1()() = 5 Z(b-] . Xaj —ay- Xb]) .
J=1
Proof. By
bj * Xa_,- = Xa_]‘ . bj' = u,'()(bj.Xaj) 5
aj - Xbl = Xbl say — w(,(aj,ij)
and

wo(bj, Xa;) = wo(a;, Xb;) ,
one has

n

> (b;- Xa; —a; - Xb;)

Jj=1

1 n
= 3> (Xa, b, +b,-Xa, ~a, Xb, ~ Xb; -a,).

=
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Applying Lemma 1.1.4 and Equation (1.3.2), one gets the assertion. a
In the following, we outline the construction of a unitary representation of
Mp(n,R) on L#(R"). Let A € Sp(n,R). Then

Ta(v,s) = (Av,s)
defines an automorphism 74 of the Heisenberg group H(n). Thus, composing

the Schrodinger representation rg with 74, we obtain an irreducible unitary
representation r{ = rg o 74 of H(n). Obviously,

1§ (0.5)f =e7f

for all s € R and f € L?(R"). Therefore, by the Stone-von Neumann theorem,
there exists an operator U(A) € U(L?(R™)) such that

U(A)ors(v,s) =rt4(v,s) o U(A) (1.3.3)

for all (v,s) € H(n). Due to Proposition 1.2.3, U(A) is determined up to a
scalar factor of modulus one. Since

A € Sp(n,R) — 74 € Aut(H(n))

is a group homomorphism, it follows that the operators U(A) give rise to a
projective unitary representation of Sp(n,R), which means that

U(AB) =c¢(A,B)U(A) o U(B)
for any A, B € Sp(n,R) with some function ¢ : Sp(n, R) x Sp(n,R) — S

Let us compute U(A) in the cases that A is one of the generators of Sp(n,R)
according to Proposition 1.1.1. Let F : L?(R™) — L?(R™) be the Fourier
transform, i.e. that unitary operator on L?(R™) which is given by

(FN@) = @m) " [ e )y
R
for any f in the Schwartz space S(R™) of rapidly decreasing smooth functions
on R"™.

Lemma 1.3.2 Set U(A) = F~! for A = Jy. Then Equation (1.5.3) is ful-

filled.

Proof. Let (v,s) € H(n) and f € S(R™). Substituting y = z — v/, we conclude
((rs(v,s) o F)f)(x)

— (2m) "2V B V) /2) / e VW) £(y) dy
R»

= (271,)7n/267i(s+<v',.1:)—(v'.v”)/’Z) / e~i(:x—v”.z—v’)f(z _ v/) dz
JR™

_ (2,”)471,/2 / e—i(.p.z>0—i(sf(v”,z>+(v',v”)/2)f(2 _ v/) dz
] n

— ((Fors(Jov,s))f)(x)



