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Preface

This volume includes the lecture notes delivered at the CIME Course “Hyper-
bolic Systems of Balance Laws” held July 14-21, 2003 in Cetraro (Cosenza,
Italy). The present volume includes lectures notes by A. Bressan, D. Serre,
K. Zumbrun and M. Williams and an appendix by A. Bressan on the center
manifold theorem. These are among the “hot topics” in this field and can be of
great interest, not only to professional mathematicians, but also for physicists
and engineers.

The concept of hyperbolic systems of balance laws was introduced by
the works of natural philosophers of the eighteenth century, predominantly
L. Euler (1755), and has over the past one hundred and fifty years become the
natural framework for the study of gas dynamics and, more broadly, of contin-
uum physics. During this period of time great personalities like Stokes, Challis,
Riemann, Rankine, Hugoniot, Lord Rayleigh and later Prandtl, Hadamard,
H. Lewy, G.I. Taylor and many others wrote several fundamental papers,
thus laying the groundwork for the further development of the mathematical
theory. However the first part of the past century did not see much activity
on the part of mathematicians in this field and it was only during the Sec-
ond World War, in connection with the Manhattan Project, that associated
research received a great impetus.

Many important scientists like J. Von Neumann, R. Courant,
K.O. Friedrichs, H. Bethe and Ya. Zeldowich became interested in this field
and proposed many new key concepts, the influence of which remains very
great to the present day.

Immediately after the Second World War there was a considerable devel-
opment in mathematical theory, with key results being obtained by a new
generation of great mathematicians like S.K. Godunov, P. Lax, F. John,
C. Morawetz and O. Oleinik, who led the field until the mid 1960s, when
J. Glimm published an outstanding paper which marked the most important
breakthrough in the history of this field. Glimm was able to prove the global
existence of general systems in one space dimension, with small BV data.
This result introduced a new approach to nonlinear wave interaction, but the
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proof was not fully deterministic. Tai-Ping Liu was later able to remove the
probabilistic part of the proof, thus making it completely deterministic.

The relation between hyperbolic balance laws and continuum physics is not
covered in any of the lectures in the present volume, but was the core topic
of a series of lectures delivered in the Cetraro School by C. Dafermos enti-
tled “Conservation Laws on Continuum Mechanics.” In his wonderful mono-
graph, published by Springer-Verlag in the Grundlehren der Mathematischen
Wissenschaften, vol. 325, Dafermos provides an extremely thorough account
of the most relevant aspects of the theory of hyperbolic conservation laws and
systematically develops their ties to classical mechanics.

The notes by Alberto Bressan in this volume are intended to provide a
self-contained presentation of recent results on hyperbohc conservation laws,
based on the vanishing viscosity approach. Glimm’s aforementioned theory
was based on the construction of partially smooth approximating solutions
with a locally self-similar structure. In order to get a uniform bound in BV
norm, interaction potential was a crucial tool, an idea Glimm borrowed from
physics. This potential, though a nonlinear functional, displays quadratic
behaviour and decreases with time, provided the initial data have a small
total variation.

In the 1990s Bressan and Tai-Ping Liu, together with various collaborators,
completed this theory by proving the continuous dependence on initial data.
The relations with the theory of compressible fluids have raised, since the
very beginning of the theory, the question whether the inviscid solutions are
in practice the same as the solutions with low viscosity. Although this fact had
been established for various specific situations, it was only very recently that
Bianchini and Bressan discovered a way to prove that, if the total variation of
initial data remains sufficiently small, then the solutions of a viscous system of
conservation laws converge to the solutions of the inviscid system, as long as
the viscosity tends to zero. This approach allows the stability results obtained
using the previous theories to be generalized.

The results are based on various technical steps, which in the present
lecture notes Bressan describes in great detail, making a remarkable effort to
make this difficult subject also accessible to non-specialists and young doctoral
students. The notes of D. Serre cover the existence and stability of discrete
shock profiles, another very exciting topic which, since the 1940s, has greatly
interested applied mathematicians, including Von Neumann, Godounov and
Lax, who were motivated by the need for efficient numerical codes to appro-
ximate the solutions of compressible fluid systems, including situations where
shocks are present. It was immediately clear to them that a number of chal-
lenging and difficult mathematical problems needed to be solved. Partial dif-
ferential equations are often approximated by finite difference schemes. The
consistency and stability of a given scheme are usually studied through a lin-
earization along elementary solutions such as constants, travelling waves, and
shocks.
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The study of the existence and stability of travelling waves faces significant
difficulties; for example, existence may fail in rather natural situations because
of small divisors problems. Ties to many branches of mathematics, ranging
from dynamical systems to arithmetic number theory, prove to be relevant
in this field. Serre’s notes greatly emphasize this interdisciplinary aspect. His
lecture notes not only provide a very useful and comprehensive introduction
to this specific topic, but moreover propose a class of truly interesting and
challenging problems in modern spectral theory. The analysis of the vanish-
ing viscosity limit is far from being fully understood in the multidimensional
setting. It is, in any case, important to understand the presence of stable and
unstable modes along boundaries and shock profiles, where the most relevant
linear and nonlinear phenomena take place. As such, the stability of viscous
shock waves was the main focus of the lectures delivered by M. Williams and
K. Zumbrun. This topic started, for the inviscid case, with the pioneering
papers of Kreiss, Osher, Rauch and Majda. Later Metivier brought into the
field a number of far-reaching ideas from microlocal analysis, in particular the
paradifferential calculus introduced by Bony. The stability condition is ex-
pressed in terms of the so-called Kreiss-Lopatinskii determinant. The viscous
case can benefit from many of these ideas, but new tools are also needed.

Linearizing the system about a given profile (made stationary by Galilean
invariance), and taking the Laplace transform in time and the Fourier trans-
form in the hyperplane orthogonal to the direction of propagation, allows the
formulation of an eigenvalue equation for a differential operator with vari-
able coefficients. A necessary condition for the viscous profile to be stable is
that these eigenvalue equations do not have (nontrivial) solutions. The Evans
function technique provides a means to quantify this criterion.

But some rather subtle issues, in particular regarding regular dependence
on parameters, call for a cautious approach. This was understood in a cel-
ebrated paper by J. Alexander, Gardner and C. Jones. Necessary stability
conditions are expressed in terms of:

(1) the transversality of the connection in the travelling wave ODE, and

(2) the Kreiss-Lopatinskii condition, which is known to ensure weak inviscid
stability. The argument relies on the low frequency behaviour of the Evans
function. Unlike the Kreiss-Lopatinskii determinant A, encoding the linearized
stability of the inviscid shock, the Evans function is not explicitly computable.
But Zumbrun and Serre’s result shows that the Evans function is tangent to
A in the low frequency limit. Kevin Zumbrun's lectures focused on the planar
stability for viscous shock waves in systems with real viscosity. His course
provided an extensive overview of the technical tools and central concepts
involved. He took great care to make such a difficult matter comparatively
simple and approachable to an audience of young mathematicians.

M. Williams’ course focused on the short time existence of curved multidi-
mensional viscous shocks and the related small viscosity limit. It provided an
accessible account of the main ideas and methods, trying to avoid most of the
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technical difficulties connected with the use of paradifferential calculus. His
final lecture introduced the analysis of long time stability for planar viscous
shocks. A fairly complete list of references to books and research articles is
included at the bottom of all of the lecture notes.

The course was attended by several young mathematicians from various
European countries, who worked very hard during the whole period of the
Summer School. However they were also able to enjoy the beautiful hosting
facility provided by CIME, in the paradise-like sea resort of Cetraro, under
the Calabrian sun.

This course was organized with the collaboration and financial support of
the European Network on Hyperbolic and Kinetic Equations (HyKE).

I would like to express my gratitude to the CIME Foundation, to the
CIME Director Prof. Pietro Zecca and to the CIME Board Secretary Prof.
Elvira Mascolo, for their invaluable help and support, and for the tremendous
efforts they have invested to return the CIME Courses to their traditional
greatness.

Pierangelo Marcati
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BV Solutions to Hyperbolic Systems by
Vanishing Viscosity

Alberto Bressan

Department of Mathematics, Penn State University
University Park, Pa. 16802 U.S.A.
bressan@math.psu.edu

1 Introduction

The aim of these notes is to provide a self-contained presentation of recent
results on hyperbolic systems of conservation laws, based on the vanishing
viscosity approach.

A system of conservation laws in one space dimension takes the form

w + f(u), =0. (1.1)

Here u = (uy,...,u,) is the vector of conserved quantities while the com-
ponents of f = (fi...., fn) are called the fluxes. Integrating (1.1) over a fixed
interval [a,b] we find

4 Pyt de = [ wlt,z)de = — f:f(u.(t,ar))m da

a

= f(u(t,a)) — f(u(t,b)) = [inflow at a] — [outflow at b].

Each component of the vector u thus represents a quantity which is neither
created nor destroyed: its total amount inside any given interval [a,b] can
change only because of the flow across boundary points.

Systems of the form (1.1) are commonly used to express the fundamental
balance laws of continuum physics, when small viscosity or dissipation effects
are neglected. For a comprehensive discussion of conservation laws and their
derivation from basic principles of physics we refer to the book of Dafermos
[D1].

Smooth solutions of (1.1) satisfy the equivalent quasilinear system
uy + A(u)u, =0, (1.2)

where A(u) = D f(u) is the Jacobian matrix of first order partial derivatives of
f- We notice, however, that if u has a jump at some point g, then the left hand
side of (1.2) contains a product of the discontinuous function = — A(u(x))
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with the distributional derivative wu,, which in this case contains a Dirac mass
at the point zg. In general, such a product is not well defined. The quasilinear
system (1.2) is thus meaningful only within a class of continuous functions. On
the other hand, working with the equation in divergence form (1.1) allows us
to consider discontinuous solutions as well, interpreted in distributional sense.
We say that a locally integrable function u = u(t,z) is a weak solution of
(1.1) if ¢ — w(t,-) is continuous as a map with values in Lj,. and moreover

[[ ot s} e = 0 (L3

for every differentiable function with compact support ¢ € CL.

The above system is called strictly hyperbolic if each matrix A(u) =
D f(u) has n real, distinct eigenvalues A\ (u) < -+ < A, (u). One can then find
dual bases of left and right eigenvectors of A(u), denoted by Iy (w),. .., L, (u)

and ry(u), ..., r,(u), normalized according to
1 ] =i,
il =1, Iy = W A (L4)
) 0 [ T

To appreciate the effect of the non-linearity, consider first the case of a
linear system with constant coefficients

uy + Augy = 0. (1.5)

Call \; < --- < )\, the eigenvalues of the matrix A, and let [;, »; be the
corresponding left and right eigenvectors as in (1.4). The general solution of
(1.5) can be written as a superposition of independent linear waves:

u(t,z) = Z di(x — Nit)ri ¢i(y) = li - u(0,y).

Notice that here the solution is completely decoupled along the eigenspaces of
A, and each component travels with constant speed, given by the correspond-
ing eigenvalue of A.

In the nonlinear case (1.2) where the matrix A depends on the state w,
new features will appear in the solutions.

(i) Since the eigenvalues A\; now depend on u, the shape of the various com-
ponents in the solution will vary in time (fig. 1). Rarefaction waves will
decay, and compression waves will become steeper, possibly leading to
shock formation in finite time.

(ii) Since the eigenvectors r; also depend on u, nontrivial interactions between
different waves will occur (fig. 2). The strength of the interacting waves
may change, and new waves of different families can be created, as a result
of the interaction.
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u
u(0) (t)
:
X
Fig. 1.
linear nonlinear
t A '
X
Fig. 2.

The strong nonlinearity of the equations and the lack of regularity of so-
lutions, also due to the absence of second order terms that could provide a
smoothing effect, account for most of the difficulties encountered in a rigorous
mathematical analysis of the system (1.1). It is well known that the main
techniques of abstract functional analysis do not apply in this context. Solu-
tions cannot be represented as fixed points of continuous transformations, or
in variational form, as critical points of suitable functionals. Dealing with vec-
tor valued functions, comparison principles based on upper or lower solutions
cannot be used. Moreover, the theory of accretive operators and contractive
nonlinear semigroups works well in the scalar case [C], but does not apply to
systems. For the above reasons, the theory of hyperbolic conservation laws
has largely developed by ad hoc methods, along two main lines.

1. The BV setting, considered by Glimm [G]. Solutions are here constructed
within a space of functions with bounded variation, controlling the BV norm
by a wave interaction functional.

2. The L™ setting, considered by Tartar and DiPerna [DP2], based on weak
convergence and a compensated compactness argument.
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Both approaches yield results on the global existence of weak solutions.
However, the method of compensated compactness appears to be suitable only
for 2x 2 systems. Moreover, it is only in the BV setting that the well-posedness
of the Cauchy problem could recently be proved, as well as the stability and
convergence of vanishing viscosity approximations. Throughout the following
we thus restrict ourselves to the study of BV solutions, referring to [DP2] or
[Se] for the alternative approach based on compensated compactness.

Since the pioneering work of Glimm, the basic building block toward the
construction and the analysis of more general solutions has been provided by
the Riemann problem, i.e. the initial value problem with piecewise constant
data

u b <0,

u(0,z) = u(z) = {'u,+ if z>0. (1.6)

This was first introduced by B.Riemann (1860) in the context of isentropic gas
dynamics. A century later, P.Lax [Lx] and T.P.Liu [L1] solved the Riemann
problem for more general n x n systems. The new approach of Bianchini [Bi]
now applies to all strictly hyperbolic systems, not necessarily in conservation
form. Solutions are always found in the self-similar form u(t,z) = U(x/t).
The central position taken by the Riemann problem is related to a symmetry
of the equations (1.1). If u = u(t, z) is a solution of (1.1), then for any 6 > 0
the function
u’(t,z) = u(6t, 0z)

provides another solution. The solutions which are invariant under these
rescalings of the independent variables are precisely those which correspond
to some Riemann data (1.6).

For a general Cauchy problem, both the Glimm scheme [G] and the method
of front tracking [D1], [DP1], [B1], [BaJ], [HR] yield approximate solutions
of a general Cauchy problem by piecing together a large number of Riemann
solutions. For initial data with small total variation, this approach is successful
because one can provide a uniform a priori bound on the amount of new waves
produced by nonlinear interactions, and hence on the total variation of the
solution. It is safe to say that, in the context of weak solutions with small
total variation, nearly all results on the existence, uniqueness, continuous
dependence and qualitative behavior have relied on a careful analysis of the
Riemann problem.

In [BiB] a substantially different perspective has emerged from the study
of vanishing viscosity approximations. Solutions of (1.1) are here obtained as
limits for € — 0 of solutions to the parabolic problems

uj + A(u®)ui, = eus,,

(1.7)
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with A(u) = Df(u). This approach is very natural and has been considered
since the 1950’s. However, complete results had been obtained only in the
scalar case [O], [K]. For general n x n systems, the main difficulty lies in
establishing the compactness of the approximating sequence. We observe that
u®(t,x) solves (1.7) if and only if u*(t,z) = u(t/z, x/e) for some function u
which satisfies

ut + A(u)u:r = Uz - (18)

In the analysis of vanishing viscosity approximations, the key step is to derive a
priori estimates on the total variation and on the stability of solutions of (1.8).
For this parabolic system, the rescaling (¢, x) — (0t, fx) no longer determines
a symmetry. Hence the Riemann data no longer hold a privileged position. The
role of basic building block is now taken by the viscous traveling profiles,
i.e. solutions of the form

u(t, =) = Uz — At).
Of course, the function U must then satisfy the second order O.D.E.
Ul (A(U) - AU

In this new approach, the profile u(-) of a viscous solution is viewed locally
as a superposition of viscous traveling waves. More precisely, let a smooth
function u : R — R™ be given. At each point z, looking at the second order
jet (u,uy,u.,) we seek traveling profiles Uy, ..., U, such that

Ui” = (A(U,) — Gf)U,-, i (19)
for some speed o; close to the characteristic speed \;, and moreover

Ui(z) = u(x) AW T (1.10)
> Ui(@) = ua.(2), > U (2) = uze(a). (1.11)

It turns out that this decomposition is unique provided that the traveling
profiles are chosen within suitable center manifolds. We let 7; be the unit
vector parallel to U;, so that U/ = v;7; for some scalar v;. One can show
that 7; remains close to the eigenvector r;(u) of the Jacobian matrix A(u) =
D f(u), but 7; # ri(u) in general. The first equation in (1.11) now yields the

decomposition
Uy = E 111'7‘:,‘ " (112)
i

If u = u(t,x) is a solution of (1.8), we can think of v; as the density of i-
waves in u. The remarkable fact is that these components satisfy a system of
evolution equations

Vit + (AiVi)z — Vigr = i P=1s.. . 0, (1.13)
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where the source terms ¢; on the right hand side are INTEGRABLE over the
whole domain {z € R, ¢ > 0}. Indeed, we can think of the sources ¢; as new
waves produced by interactions between viscous waves. Their total strength
is controlled by means of viscous interaction functionals, somewhat similar to
the one introduced by Glimm in [G] to study the hyperbolic case. Since the
left hand side of (1.13) is in conservation form and the vectors 7; have unit
length, for an arbitrarily large time ¢ we obtain the bound

]Iu,c(t)”Ll < Z ||v,-(t)”r_'1 < Z (“vi(to)H +/L /Id).,-(s,m)| da:ds) <1 (1:14)

This argument yields global BV bounds and stabilify estimates for viscous
solutions. In turn, letting £ — 0 in (1.7), a standard compactness argument
yields the convergence of u® to a weak solution u of (1.1).

The plan of these notes is as follows. In Section 2 we briefly review the
basic theory of hyperbolic systems of conservation laws: shock and rarefaction
waves, entropies, the Liu admissibility conditions and the Riemann problem.
For initial data with small total variation, we also recall the main results
concerning the existence, uniqueness and stability of solutions to the general
Cauchy problem. Section 3 contains the statement of the main new results
on vanishing viscosity limits and an outline of the proof. In Section 4 we de-
rive some preliminary estimates which can be obtained by standard parabolic
techniques, representing a viscous solution in terms of convolutions with a
heat kernel. Section 5 discusses in detail the local decomposition of a solution
as superposition of viscous traveling waves. The evolution equations (1.13) for
the components v; and the strength of the source terms ¢; are then studied in
Section 6. This will provide the crucial estimate on the total variation of vis-
cous solutions, uniformly in time. In Section 7 we briefly examine the stability
and some other properties of viscous solutions. The existence, uniqueness and
stability of vanishing viscosity limits are then discussed in Section 8.

2 Review of Hyperbolic Conservation Laws

In most of this section, we shall consider a strictly hyperbolic system of con-
servation laws satisfying the additional hypothesis

(H)For each i = 1,...,n, the i-th field is either genuinely nonlinear, so that
DA;(u)-ri(u) > 0 for all u, or linearly degenerate, with DX;(u)-r;(u) =0
for all .

We observe that the ¢-th characteristic field is genuinely nonlinear iff the
eigenvalue A; is strictly increasing along each integral curve of the correspond-
ing field of eigenvectors r;. It is linearly degenerate when \; is constant along
each such curve.



