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Introduction

The main object of this book is the study of homotopy equiva-
lences between 3-manifolds. Here a 3-manifold M 1is always compact,
orientable and irreducible. Moreover, we suppose that M is bound-
ary-irreducible, that is, for any component G of 3aM, an > "1M is
injective. However, we do not always insist that the boundary is
non-empty. Examples of such 3-manifolds are the knot spaces (of
non-trivial knots).

If Ml and M2 are such 3-manifolds with non-empty boundaries,
and f: Ml -> M2 a homotopy equivalence, one knows by [Wa 4] that f
can be deformed into a homeomorphism, provided it preserves the per-
ipheral structure, that is, f|aMl can be deformed into 6M2.

We are interested here in homotopy egquivalences whose res-
trictions to the boundary cannot be deformed into the boundary. Such
homotopy equivalences will be called exotic. Our main result is a
classification theorem for exotic homotopy equivalences.

Before describing this theorem let us briefly recall the
situation in the 2-dimensional case. Many exotic homotopy equiva-
lences can be found between surfaces Fl, F2 with boundaries. For
example, there is of course at least one such homotopy equivalence
between the torus with one hole and the 2-sphere with three holes.
Since a surface with boundary is a K(m,l)-space whose fundamental
group is free, the exotic homotopy equivalences of surfaces can be
analyzed by using the presentations of the outer automorphism
groups of free groups [Ni 1l]. In particular, it follows that they
are (finitely) generated by Dehn flips (along arcs). Here a Dehn
flip means an exotic homotopy equivalence f: F, - F_, for which there

is an arc %k 1in F2’ kN an = 3k, such that f}lk iz again an arc

and that £ is the identity outside of regular neighborhoods of
these arcs. If, on the other hand,\a homotopy equivalence f: Fl > F2
is boundary preserving, i.e. not exotic, it can be deformed into a
homeomorphism (Nielsen's theorem). Furthermore, one knows that there
is a finite set of Dehn twists which generate a normal subgroup of
index two in the whole mapping class group of a surface (orientable

or not) (see [De 1] ILi 1, 2, 4].) Here a Dehn twist is a homeo-



morphism which is the identity outside of a regular neighborhood of
a closed curve. Hence, altogether, this shows that the homotopy
equivalences of surfaces are built up of locally defined maps
(neglecting orientation-phenomena). However, one does not know in
general the relations between homotopy equivalences (but see the
recent work of Hatcher and Thurston on the mapping class group).

In order to switch to dimension three, take the product of
a surface with the l-sphere, 1In this way we get our first examples
of exotic homotopy equivalences of 3-manifolds. Indeed these homotopy
equivalences are generated by Dehn flips along annuli. Similarly,
Sl—bundles over a surface with boundary contain a lot of exotic
homotopy equivalences. Still more can be found in Seifert fibre
spaces with boundaries. Here the exceptional fibres give rise to
additional phenomena. Although every homotopy equivalence of a
sufficiently large Seifert fibre space can be deformed into a fibre
preserving map which maps exceptional fibres to exceptional fibres
(see 28.4), the restriction to the complement of the exceptional
fibres is in general not a homotopy equivalence. Hence exotic homo-
topy equivalences of Seifert fibre spaces might be rather complicated,
and they are, in fact, not yet completely understood.

The examples considered so far are found in very special
3-manifolds and one might expect in other 3-manifolds still more
freedom for constructing exotic homotopy equivalences. In contrast
to that, it is very difficult to find them. Hence one turns hind-
sight into foresight and conjectures that the above examples are the
only ones (up to modifications). This idea turns out to be correct

and therefrom it emerges what we call the characteristic submanifold.

Since the concept of the characteristic submanifold plays a crucial
role throughout the whole boock we present here an explicit defini-

tion of it-—-at least in the absolute case:

Definition. Let M Dbe a 3-manifold (with or without boundary). A
codim zero submanifold V of M 1is called a characteristic submani-

fold if the following holds:

1. Each component X of V admits a structure as Seifert

fibre space, with fibre projection, p: X » B, such that



-1
XNa=p pXna),

or as I-bundle, with fibre projection, p: X > B, such
that

XN aM = (3% - p_le)_.

2. If W is a non-empty codim zero submanifold of M
which consists of components of (M - V)_, then V U W is
not a submanifold satisfying 1.

3. If W' is a submanifold of M satisfying 1 and 2 ,

then W' can be deformed into V, by using a proper isotopy.

A codim zero submanifold W of M is called an esgential F-
manifold (F = fibered) if 1 holds and if every component of
(aw - BM)— is incompressible (a surface G in M, G N M = 3G, 1is
called incompressible if it is not a 2-sphere and an > ﬂlM is
injective).

Some work is required to show that the characteristic submani-
fold for sufficiently large 3-manifolds (in the sense of [Wa 4], e.d.
if aM £ @) indeed exists (i.e. that it is well-defined--of course we
do not assert that it is always non-empty) and that it is unique, up

to ambient isotopy.

Example. The characteristic submanifold of a Seifert fibre space M
is equal to M.

It turns out that the characteristic submanifold is a very
useful geometric structure in M. In particular, our classification
of exotic homotopy equivalences can be given within this concept.

Indeed, we shall prove the following (see 24.2).

Classificatjion theorem. Let Ml’ M2 be 3-manifold (irreducible etc.)
with non-empty boundaries, and Vl, V2 resp. their characteristic sub-
manifolds. Let £f: Ml > M2 be any homotopy equivalence. Then £ can
be deformed so that afterwards



1. f(vl) c VvV, and f(M1 - vl) c M. -V

2 2 2°

2, f|V1: v, > v, is a homotopy equivalence,

3. f|Ml - Vl: M1 - Vl > M2 -V, is a homeomorphism.

The proof of this theorem takes up a large part of these
notes. An outline of the proof will be given below. But first we
would like to mention some of its consequences, and also we will
describe some results, obtained in the course of its proof, which are
of interest in their own right.

To begin, recall from [Wa 4] that a homotopy equivalence
between 3-manifolds which is a homeomorphism on the boundaries can
be deformed into a homeomorphism by using a homotopy which is con-
stant on the boundary. That means--in our context--that in the
classification theorem above, Vi’ i =1,2, can be replaced by the
submanifold Wi which consists of all those components of Vi which

do meet aMi. This in turn implies

Corollary. If there are no essential annuli, there are no exotic

homotopy equivalences.
Here an essential annulus A in M, A N 8 = 3A, means an annulus
which is incompressible and not boundary-parallel.

To consider a concrete example, let M be the knot space
of a non-trivial knot. If the submanifold W is not trivial (i.e.
not a regular neighborhood of 3M) one knows a priori that the knot
is either non-prime, or a cable knot, or a torus knot (see 14.8). 1In
any other case, the classification theorem says that the homotopy
type of M contains just one 3-manifold, up to homeomorphism.

Recall that, in general, 3-manifolds can be homotopic with-
out being homeomorphic. However, with the help of the classification
theorem, we shall see that the homotopy type of a 3-manifold
(irreducible, sufficiently large, etc.) contains only finitely many
3-manifolds (829).

The last remark leads us to the isomorphism procblem for the

fundamental groups of sufficiently large 3-manifolds. This problem



asks for an algorithm for deciding whether or not two such fundamen-
tal groups are isomorphic. Since a sufficiently large 3-manifold is
a K(m,l)-space (recall the restrictions in the beginning) one knows
that every isomorphism between their fundamental groups is induced
by a homotopy equivalence. Using this fact, together with the class-
ification theorem, the above isomorphism problem can be reduced to
the homeomorphism problem for sufficiently large 3-manifolds (829).
But the latter problem was completely solved recently [Ha 2] [He 1]
[Th 1]. Hence, in particular, the isomorphism problem for knot
groups is solved.

Having established the classification theorem we can push
the study of homotopy equivalences a bit further still. Two
directions of this study are conceivable. One is to describe one
given exotic homotopy equivalence more fully, the other is to study
the (exotic) homotopy eguivalences all at once.

To describe a result towards the first direction, let a
homotopy equivalence f: M, > M, be given. Furthermore let us assume

1 2
that the 3-manifolds M M_ contain no Klein bottles and no essential

1’ 72
annuli which separate a solid torus (e.g. no exceptional fibre).

Then we find an essential F-manifold Of of M2 which is unique, up to

ambient isotopy, and which has the following properties:
1. £ can be deformed such that afterwards

f|f_10f: f_lof > 0f is a homotopy equivalence, and

-1 .- -1 - -
f|(Ml—f Of) = My - £ 70.) > (M, -0.) is a

homeomorphism.
2. of can be properly isotoped into all essential P-manifolds
which satisfy 1.
0. will be called an obstruction submanifold for £, because f is

£
exotic if and only if Of # B. Some work is required to establish

the obstruction submanifold for homotopy equivalences of surfaces
(see 30.15). After this the forementioned result can be deduced
with the help of the classification theorem (see §28).

As a first attack in the second direction we investigate the

mapping class group H(M) of sufficiently large 3-manifolds. Our

approach to this is the following. First observe that, by the



uniqueness of the characteristic submanifold, Vv, the computation of
H(M) can be split into that of HE:V(V) (= isotopy classes of homeo-
morphisms h: V - V which extend to M) and that of HV(M - V)

(= isotopy classes of homeomorphisms h: M - ¥V > M - V which extend
to M). For Hﬁ:v(V) one can give a fairly explicit computation (see
825), using the recent presentation of the mapping class group of
surfaces [HT l1]. Furthermore, we shall prove (827) that the mapping
class group of a simple 3-manifold is finite (and so HV(E:G)). Here
a simple 3-manifold means a sufficiently large 3-manifold whose
characteristic submanifold is trivial. To prove this, we use the
theory of characteristic submanifolds and Haken's finiteness
theorem for surfaces [Ha 1] in order to reduce the problem to the
conjugacy problem forthe mapping class group of surfaces. The
latter was recently solved [He 1] [Th 1]. Altogether, we obtain in
any sufficiently large 3-manifold a finite set of Dehn twists
(along annuli and tori) which generate a normal subgroup in the
mapping class group of finite index (see 827, and cf. the 2-dimen-
sional case mentioned in the beginning). As a consequence of this
property of the mapping class group we obtain infinitely many
examples of surface-~-homeomorphisms which cannot be extended to any
3-manifold (see 27.10).

Observe that the definition of the characteristic submani-
fold does not depend on the presence of any homotopy equivalence.
In fact, the characteristic submanifold has still other very nice
properties besides the above relationship with exotic homotopy
equivalences. The most important one is that one can prove a cer-
tain enclosing theorem. To describe this we first have to give a

definition of an essential singular annulus and torus.

Definition. Let T be an annulus or torus. Then a map

f: (T,8T) > (M,3M) will be called an essential singular annulus or
torus if £ induces an injection of the fundamental groups and if

it cannot be deformed into M.

Note that by the above definition of the characteristic

submanifold, the characteristic submanifold contains all essential



(non-singular) annuli or tori of a sufficiently large 3-manifold,up

to proper isotopy. In addition to this we shall prove (see B12):

Enclosing theorem. If M is a sufficiently large 3-manifold (with

or without boundary), then every essential singular annulus or torus

in M can be deformed into the characteristic submanifold of M.

Now recall that the characteristic submanifold consists of
I-bundles and Seifert fibre spaces only. Of course, one finds many
essential non-singular annuli and tori in such 3-manifolds. Hence,
as an immediate consequence of the enclosing theorem, we obtain the
"annulus" and "torus theorems" [Wa 6]: the existence of an essential
singular annulus implies the existence of an essential non-singular
one, The same is true for the torus, except in the very special
case of a Seifert fibre space over the 2-sphere with holes, where
the sum of boundary components and exceptional fibres is at most
three. Furthermore, essential singular annuli and tori can be fairly
explicitely classified in I-bundles and Seifert fibre spaces, and so
it follows from the enclosing theorem that any such map can be
deformed into the composition of a covering map and an immersion with-
out triple points.

Working in a suitable relative framework and using the notion
of an essential map, we also obtain a version of the enclosing
theorem for essential maps of I-bundles and Seifert fibre spaces (see
813). As an immediate corollary we get: if M has a finite covering
which is a Seifert fibre space, then M must be a Seifert-fibre
space itself (see 12.11).

In an appendix, we finally apply the enclosing theorem to
questions about the fundamental groups of sufficiently large 3-
manifolds. There we give a geometric characterization of sufficiently
large 3-manifolds whose fundamental group is an R-group (an R-group
is a group, where xn = yn implies x = y), and we apply this to give
another proof of Shalen's result [Sh 1] that no element of a 3~
manifold group is infinitely divisible. An easy consequence of this
and the enclosing theorem is that the centralizer of any element of a

sufficiently large 3-manifold group is always carried by an embedded



Seifert fibre space (or a 2-sheeted covering of such a submanifold).
We now give a more detailed description of parts I - IV of

this paper in the form of a Leitfaden.

Part I: The concepts of characteristic submanifolds and manifolds

with boundary-patterns.

Part 1 consists of three chapters.

Chapter I. As a first motivation (others will become obvious later)
for this chapter the reader should keep in mind the following obser-
vation. On the one hand, the “ball" and the "cube" are topologically
the same, but on the other hand, the notion of a "cube" does involve
much more information. For example, we may distinguish corners,
edges, and faces of the cube. That is, we have more information
about the boundary. Since we would like to obtain results about
manifolds whose boundaries are non-empty, it would be wise to pre-
serve as much information about the boundary as possible. From the
effort to present this information in a more organized way the
concept of "manifolds with boundary-patterns" emerges.

A boundary-pattern of an n-manifold M, n > 1, is a collec-
Hon of (n-1)-manifolds in the boundary of M which meet nicely (see
Def. 1.1). An admissible map is a map which preserves this structure
(see Def. 1.2)--the same with admissible deformations and admissible
homotopy equivalences.

It appears that the ensueing formalism is of some interest in
its own right, e.g. there is a relative version of the loop-theorem
for manifolds with boundary-patterns (see 2.1), and this is equiva-
lent (or at least implies) .the main technical result of[wa 5].
Furthermore, we introduce the notions of “useful boundary-patterns"
and “"essential maps" (see Def. 2.2 and Def. 3.1). These notions are
relativized versions of "boundary irreducible" and "maps which
induce an injection of the fundamental groups". A first advantage
of these new notions is immediate from their definitions: While,
in general, 3-manifolds do not stay boundary-irreducible after

splitting at incompressible surfaces, this is true for 3-manifolds
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with useful boundary-patterns after splitting at essential surfaces.
After having reproduced the proof of Waldhausen's theorem

[Wa 4] for 3-manifolds with non-empty boundaries (respectively with

boundary-patterns) (3.4) we finally conclude chapter I by establish-

ing some general position theorems (see e.g. 4.4 and 4.5).

Note. Throughout the whole book we have to work entirely within
the framework of manifolds with boundary-patterns. However, in this
introduction we mostly ignore the boundary-patterns, for convenience.
Here the reader should keep in mind that "deformation", "homotopy
equivalence" etc. always mean "admissible deformation", "admissible

homotopy equivalence" etc.

Chapter II. In this chapter we study singular essential annuli and
tori in I-bundles, Seifert fibre spaces (85), generalized Stallings
fibrations (86) and generalized Seifert fibre spaces (8§7). In par-
ticular, the proof of the annulus- and torus-theorem for Stallings
fibrations is contained here (B6). The 3-manifolds considered in
this chapter are fairly special. But on the other hand, information
about them is very important for us, because many questions on
3-manifolds can be reduced, via characteristic submanifolds, to

questions on these special 3-manifolds.

Chapter III. Here the concept of characteristic submanifolds will
be developed. Several definitions of characteristic submanifolds
will be given--the most convenient one was already mentioned in the
beginning (at least in the absolute case). Using the finiteness
theorem for surfaces [(Kn 1], [Ha 3], we prove the existence of a
characteristic submanifold for sufficiently large 3-manifolds with
useful boundary-patterns (82). Later on (El0) we prove some useful
facts about these submanifolds (including the equivalence of all
their definitions (10.1)), and we end up with the proof of the

uniqueness of characteristic submanifolds, up to ambient isotopy.

Part 1I: The enclosing theorems.
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Part II consists of two chapters.

Chapter IV, In this chapter the first enclosing theorem will be
proved,asserting that every essential singular torus, annulus, or
square in a sufficiently large 3-manifold M with useful boundary-
pattern can be admissibly deformed into the characteristic submani-
fold of M.

Here we give a short indication of the proof. It uses
induction on a hierarchy. Recall from [Wa 4] that a hierarchy is a

sequence M = M M Mn of 3-manifolds, where Mi is given by

0’ 12
splitting Mi-l along an incompressible surface. The boundary-

pattern of each Mi is the "trace" of the previous splittings,
Since the first step of this induction is trivial, we turn

at once to the inductive step from Mi+ to Mi' For this denote by

1

S the surface which splits Mi to Mi+l’ and identify a regular

neighborhood of S with S x I.
Let fi be any essential singular torus, annulus, or square
in Mi' Then with the help of chapter I, we may assume that fi is

deformed so that firstly fi+ consists also of such

-1
1= ElE M
singular surfaces in Mi+l’ and so, by our induction assumption, that

1 is contained in the characteristic submanifold Vi+l of

Observe that, by the very definition, every essential F-mani-

secondly fi+
My
fold in Mi can be isotoped into the characteristic submanifold Vi of
Mi' Hence it suffices to prove that fi can be deformed into an
essential F-manifold, This is comparatively easy if S is either

a torus, annulus, or square. So let us assume that S cannot be

chosen to be one of these surfaces. Then, in general, the surfaces

Vi+l N (s x 0) and Vi+l N (S x 1) do not correspond via S X I.

In this situation we use a combing process. Similar sorts

of this process will be used also in chapter VIII and in the proof of
the finiteness of the mapping class group. Generally speaking, a
combing process is an organized way (by means of the characteristic
submanifold) to extend results which are true for a 2-dimensional
submanifold to the whole 3-manifold. In the case at hand, the

corresponding 2-manifold result is the following
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Lemma (see €11)., Let F be a surface which is not a torus, annulus
or square. Let FO, Fl be two essential surfaces in F which are in
a "very good position" (this position can always be obtained by an

isotopy of FO’ see Bll). Then every essential singular curve (closed
or not) which can be deformed into both FO and Fl can be deformed into

Fo n Fl'

By inductive application of this lemma, we find in Vi+l

can be deformed into

an essential

F-manifold Wi+ with the properties that fi+

1 1

Wi+1 and that, moreover, Wi+l N (s x 0) and Wi+l n (s x 1)
correspond via S x I . Thus the components of Wi+l can now
be fitted together, across S x I, and the outcome is a submanifold
in Mi such that fi can be deformed into one of its components, X.
If X is an essential I-bundle or Seifert fibre space, we
are done. If not, it is a generalized Stallings fibration. Then,
applying the results of Chapter II, the existence of £ implies
the existence of an essential non-singular torus, annulus or square

in Mi' But this contradicts our choice of 8,

Chapter V. BAs a corollary of the above enclosing theorem on essen-—
tial singular tori, annuli, and squares, we prove in 813 an enclosing
theorem for essential maps of I-bundles and Seifert fibre spaces.
wWith the help of these enclosing theorems we are in the
position to present the classification theorem in the special case

of homotopy equivalences f: M, > M_, where M

1 2 2
boundary consists of tori. This will be proved in §15: first we

is a 3-manifold whose

observe that aMl necessarily consists of tori as well. Hence fIaMl

is a system of essential singular tori in M Recalling Waldhausen's

9
theorem [Wa 4] it now follows immediately from the first enclosing
theorem that f is homotopic to a homeomorphism, provided the

characteristic submanifold of M2 is a regular neighborhcod of 3M

If it isnot, a bit more work is required, using also the second

5

enclosing theorem.
However, in the general case,i.e. if the boundaries are
arbitrary, the proof of the classification theorem is much more com-

plicated. The idea is not to consider the restriction f|aM. as

1
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suggested by the Waldhausen theorem, but instead to use induction on
a great hierarchy--a concept which will be described later. To make

this idea work we first have to prove certain splitting theorems.

Part ITI: The splitting theorems.

Part ITTI consists of two chapters, in which two splitting

theorems will be proved. The first of these splitting theorems (see

18.3) says that every homotopy equivalence f: Ml > M2 can be deformed

so that afterwards flvl: vy >V, and f|M, - Viz M) -V, > M, - v, are
homotopy equivalences. Here Vi, i = 1,2, denotes the characteristic
submanifold of Mi' This theorem will be proved in chapter VI (the
use of boundary-patterns is here crucial, both in the proof and in

the correct formulation of the theorem, see 18,3).

Chapter VI. 1In B15 and 6§16, we prove the existence of two homotopies,
one which deforms £ so that afterwards f_lV2 is an essential F-

manifold, and one which deforms f so that afterwards f(Vl) c Vv In

o
8§17 we see that these homotopies can be chosen independently from

each other. Indeed, we find a homotopy ft such that fIlV2 is an

essential F-manifold and such that every component of Vl is a com-

ponent of fIlVZ. The properties of the characteristic submanifolds
1

then ensure that Vl is necessarily equal to fi V2.

In B18 it will be shown that the characteristic submanifold
is very rigid with respect to homotopies. More precisely, we prove
that any given homotopy ht of a 3-manifold M with hl}v =V, i=20,1,
ca? be deformed (relative the ends) into a homotopy gt with
9. V =V, for all t € I. This completes the proof of the first

splitting theorem.

Chapter VII. Having established the above splitting theorem we are
led to consider the behavior of homotopy equivalences in the comple-
ment of the characteristic submanifolds. The proper setting for
this problem is to study homotopy equivalences between simple 3-
manifolds. This will be done in chapter VII:

A simple 3-manifold is a sufficiently large 3-manifold whose



