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Preface

This lecture note is an extended version of the author’s Ph.D. thesis “The
adjoint of a semigroup of linear operators” (Leiden, 1992). The main difference
consists of two new chapters (3 and 4) dealing with Hille-Yosida operators,
extra- and interpolation and perturbation theory. Also, the sections 7.4 and
8.2 are new.

The general theory of adjoint semigroups was initiated by Phillips [Ph2],
whose results are presented in somewhat more generality in the book of Hille
and Phillips [HPh], and was taken up a little later by de Leeuw [dL]. Before
that, Feller [Fe] had already used adjoint semigroups in the theory of partial
differential equations. After these papers almost no new results on adjoint semi-
groups were published, although the theory of strongly continuous semigroups
continued to develop rapidly. Recently the interest in adjoint semigroups re-
vived however, due to many applications that were found to, e.g., elliptic partial
differential equations [Am], population dynamics [Ceal-6], [DGT], [GH], [GW],
[In], control theory [Heij], approximation theory [Ti], and delay equations [D],
[DV], [HV], [V]. This stimulated also renewed interest in the abstract theory
of adjoint semigroups, e.g. [Pal-3], [GNa] and [DGH].

The aim of the present lecture note is to give a systematic exposition
of the abstract theory of adjoint semigroups. Although we illustrate many
results with concrete examples, we do not give applications of the theory. An
exposition of the various fields where adjoint semigroups have found fruitful
application would require a volume of at least comparable size. Rather, this
lecture note should provide the interested reader with sufficient background
material in order to make these applications easily accessible.

From the duality relation (T*(t)z*,x) = (z*, T (t)x), it follows that theo-
rems on Cyp-semigroups trivially translate into theorems on their adjoints, the
difference being that the weak*-topology of X* takes over the role of the strong
topology of X. For example, T*(¢) is a weak*-continuous semigroup, but not
necessarily strongly continuous. From this point of view adjoint semigroups
mirror, in a rather bad sense, the properties of their pre-adjoints, and no in-
teresting new phenomena occur. This is, however, not the only way to look
at adjoint semigroups. Instead, in this lecture note we try to understand the
reasons why the adjoint semigroup fails to be strongly continuous and to study
the extent to which it does so, and how this depends on the structure of the
underlying Banach space and the properties of the pre-adjoint semigroup.

Roughly speaking, the book consists of two parts. The first part, Chapters
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1-5, contains the general theory of adjoint semigroups, whereas the second part,
Chapters 6-8, deals with more ‘structure theoretical’ topics. Let us describe
in some more detail the contents of each chapter. In Chapter 1, the basic
properties of the adjoint semigroup 7*(t) are proved and the canonical spaces
X© and X©® associated with the adjoint semigroup are introduced. Already
at this stage we treat the adjoints of certain semigroups arising in a natural
way in connection with Schauder bases. The reason is the usefulness of these
semigroups for providing counter-examples to many questions in later chapters.
In Chapter 2, the o(X, X®)-topology is studied in detail. Many results show
that this topology behaves rather like the weak topology, although there are
also some differences. We give very simple proof of de Pagter’s refinement
of Phillips’s characterization of “-reflexivity. In Chapter 3 we start with a
systematic study of extrapolation spaces associated to a Hille-Yosida operator,
having in mind that A*, the adjoint of a generator A, is a Hille-Yosida operator.
The fact that a Hille-Yosida operator on X extends to a generator of a Cp-
semigroup on a suitable extrapolation space X_j, provides us with a very
useful tool. It allows a reduction of questions about Hille-Yosida operators
and other objects associated to it to the semigroup case. This idea is at the
basis of our presentation of perturbation theory in Chapter 4. Performing
calculations in X _; rather than in X, simplifies many arguments and reduces
the proofs of the various variation-of-constants formulas to trivialities. Also
in Chapter 4, we apply these ideas to the study of abstract Cauchy problems
and of certain weak*-continuous semigroups on dual spaces. In Chapter 5, we
take a closer look to the extent an orbit of the adjoint semigroup can fail to
be strongly continuous. If X® denotes the closed subspace of X* consisting of
those elements whose orbits are strongly continuous for ¢ > 0, then we show
that the quotient space X*/X % is either zero or non-separable. A modification
of the proof is used to show that orbits in the quotient space X* /X are either
identically zero for ¢ > 0, or non-separable.

In the last three chapters, we study the relationship between the geometry
of the underlying Banach space and the behaviour of the adjoint semigroup, and
we take a look at several special classes of semigroups. In Chapter 6, after prov-
ing a Hahn-Banach type theorem and giving some applications, we show that
there are a number of connections between continuity of the adjoint semigroup
and the Banach space X or X* having the Radon-Nikodym property or not.
For example, if X* has the RNP, then T*(t) is strongly continuous for ¢t > 0.
In Chapter 7, which is based on joint work with Giinther Greiner, we study
the rather delicate problem to describe the semigroup dual of a tensor product
of two semigroups in terms of the semigroup duals of the two semigroups. The
special case where T'(t) is translation with respect to the first coordinate on
Cy(IR x K), is discussed in detail. Finally, in Chapter 8, which is partly based
on joint work with Ben de Pagter, we study adjoints of positive semigroups.
The problem of determining when the semigroup dual X© is a sublattice of X*
is discussed. Although, in general, this problem is difficult, there is detailed
information on the behaviour of the adjoint semigroup in the case where X is
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a C(K)-space or T(t) is a multiplication semigroup. Also, there is a section
providing semigroup versions of a classical result of Wiener and Young that,
with respect to the translation semigroup on Cy(IR), T*(¢)pr L p for almost all
t, if p is singular with respect to the Lebesgue measure.

At this point I would like to thank a number of persons, who have in
one way or another contributed essentially to the present book. First of all,
my promotor Odo Diekmann, who always encouraged me to develop my own
mathematical interests. I very much appreciate the freedom I experienced
in working with him. Also I thank Ben de Pagter for his constant interest
and the many stimulating discussions I had with him. Not only does this
book contain a number of results due to him or obtained in joint work, also
many of my own results can be traced back to ideas of Ben in the form of
conjectures or suggestions about what would be an interesting topic to take a
closer look at. In particular, this applies to Chapters 5 and 8. I would like
to thank the Tibinger school for their hospitality during my half-year stay in
the Wintersemester 1990/91. Especially I thank Rainer Nagel and Giinther
Greiner who always showed much stimulating interest in my work and gave
valuable advice. The material of Chapter 7 is joint work with Giinther, which
was done while he visited the CWI in 1990. Also, during my stay in Tiibingen
I enjoyed working with him very much. The suggestion to use extrapolation
theory in matters related to Hille-Yosida operators, is due to Rainer and turned
out unexpectedly useful. The warm and personal way Rainer deals with his
students and co-workers is really admirable. Finally, I would like to thank
Hans Heesterbeek, whose high spirits and humour made it a pleasure to share
aroom with him during the past four years, Adri Olde Daalhuis for his TeXnical
assistance and, of course, my dear Ele.
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Chapter 1

The adjoint semigroup

If T'(t) is a Cp-semigroup on a Banach space X, then elementary examples
show that the adjoint semigroup 7*(t) need not be a Cy-semigroup. This gives
rise to the basic problem of adjoint semigroup theory: what can one say about
the strong continuity of the adjoint of a Cy-semigroup?

Although we will be primarily concerned with the adjoint theory of Cy-
semigroups, in some cases we have to consider semigroups which are not neces-
sarily strongly continuous. In order to avoid constant repetition of the phrase
‘Let T(t) be a Cyp-semigroup on a Banach space X’ in almost every result,
throughout we adopt the following

Convention. The symbol T'(t) will always denote a Cy-semigroup with gen-
erator A on a Banach space X. Whenever we are dealing with semigroups on
X which are not assumed to be Cy, the notation U(t) will be used.

In this chapter the basic concepts of adjoint semigroup theory are intro-
duced. In Section 1.1 we recall some results on unbounded linear operators. In
Section 1.2 we study the adjoint of a Cy-semigroup T'(¢). The main result is
that it is weak*-generated by the adjoint of the generator of T'(¢). In Section
1.3 the semigroup dual space is defined and its most important properties are
derived. In Section 1.4 we study the spectrum of adjoint semigroups. Finally, in
Section 1.5 we compute the semigroup dual of a class of semigroups modelled
on Schauder bases. Such semigroups will be used later to construct various
(counter)examples.

We refer to the Appendix for some basic facts about Banach spaces and
semigroups and for the terminology and notation used. Unless stated otherwise,
throughout this note all vector spaces can be real or complex.

1.1. Unbounded linear operators

Let X be a Banach space. A linear operator on X is a pair (A, D(A)),
where D(A) is a linear subspace of X and A : D(A) — X is a linear map.
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Usually we will identify (A, D(A)) with the map A if it is clear that A is
defined on D(A) only. The space D(A) is called the domain of A.

A linear operator A is said to be closed if the graph
G(A) ={(z,Ar) e X x X : z€ D(A)}

of A is closed in X x X with respect to the product topology. The operator A
is densely defined if D(A) is dense.

We will associate with a densely defined linear operator A on X a linear
operator A* on X*, called its adjoint, in the following way. Define D(A*) to
be the set of all * € X* with the property that there is a y* € X* such that

(y*,x) = (z*, Ax), Ve € D(A).
Since D(A) is assumed to be dense, y*, if it exists, is unique and we define
A'r* = y".
Define R: X x X — X x X by R(z,y) = (—y, ).

Proposition 1.1.1. If A is a densely defined linear operator on X, then A*
is a weak™-closed operator.

Proof: Define a pairing between X* x X* and X x X by putting

(", y"), (z,9)) == (=, z) + (y", v).

By means of this pairing we can identify X* x X* with the dual (X x X)*. By
definition of A* we have (z*,y*) € G(A*) if and only if

((z*,y"),(—Ax,x)) =0, Vz e D(A).

In other words, G(A*) is the annihilator of R(G(A)). Since annihilators of
linear subspaces are weak*-closed, the result follows. ////

Note that in particular A* is (norm) closed.

Proposition 1.1.2. If A is a closed densely defined linear operator on X,
then A* is weak*-densely defined.

Proof: (X, weak*) is alocally convex topological vector space whose dual is X .
Hence if A* is not weak*-densely defined, then by the Hahn-Banach theorem
there is a non-zero x € X annihilating D(A*). Since G(A) (and hence RG(A))
is closed in X x X and (0,z) € G(A), by the Hahn-Banach theorem there is
an (r*,y*) € X* x X* annihilating RG(A) and non-zero on R(0,z) = (—xz,0).
In other words,

(y*,z) = (¢, Ax), Vr e D(A),
and

(z*,z) #0.

But the first equality implies that * € D(A*), so the second one implies that
x does not annihilate D(A*), a contradiction.  ////
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1.2. The adjoint semigroup

Let U(t) be a semigroup on a Banach space X. The adjoint semigroup
U*(t) is the semigroup on the dual space X* which is obtained from U(t) by
taking pointwise in t the adjoint operators U*(t) := (U(t))*. It is elementary
to see that U*(¢) is a semigroup again. If T'(t) is a Cy-semigroup, then

(T (t)z" —a", 2)| = [(«", T(t)x — )| < [|«" | | T(t)x — x|

shows that T™(t) is weak*-continuous. But T*(¢) need not be strongly contin-
uous, as is shown by several examples at the end of Section 1.3.

Recall the convention that T'(t) always denotes a Cy-semigroup with gener-
ator A. Since A is closed and densely defined, the adjoint A* is a weak*-densely
defined, weak*-closed operator.

Proposition 1.2.1. D(A*) is a T*(t)-invariant subspace of X*, and for all
x* € D(A*) we have A*T*(t)z* = T*(t)A*z".

Proof: Let * € D(A*) and z € D(A) be arbitrary. Then for any fixed t > 0
we have

(T*(t)x*, Ax) = («*, T(t)Az) = (z*, AT (¢)x)
= (A" 2", T(t)z) = (T*(t)A*z", ).
Therefore T*(t)z* € D(A*) and A*T*(t)z* = T*(t)A*z*.  ////

In the next lemma we use the concept of the weak*-integral. This integral,
as well as some other types of integrals, is discussed in the Appendix.

Proposition 1.2.2. weak* for T*(o)x* do € D(A*) for allt > 0 and * € X*,

and
it

A" (wea,k* / T"(o)x* da) =T*(t)z* — ™.
0

If x* € D(A*), then

t

t
A" ('wea,k*/ T (o)z” (la) = weak*/ T*(c)A*z" do.
0 0

Proof: Let * € D(A) be arbitrary. Using formulas (A.2) and (A.3) of the
Appendix, the identities

(weak” /0 t T*(0)a* do, Az) = / L(T*(a)m*,Am) do = / l<,-* T(0)Az) do

0

= (a“*,/o T(o)Az do) A/ o)z do)
= (@", T{t)x —z) = (T*(t)z" — =", z)
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show that weak* f(; T*(o)x* do € D(A*) and
t
A" (weak*/ T (o)x* da) =T*(t)z" —z~.
0
The second formula follows from a similar calculation: for z € D(A) we have

(A (weak* /, T*(o)z* dO’),.I?) = /f(m*,T(a)AJ:) do
0

0

t
= (weak*/ T (o)A z" do, ).
0

1

Let U(t) be a weak*-continuous semigroup on X*. The weak*-generator
of U(t) is the linear operator B on X* defined by

1
D(B):={z"e€ X" : u'(’ak*-lilxg;(U(t)I* — z*) exists };
t

Bzr™* :

1
weak*-l{ilrg)l ?(U(f)d'* —z*), 2" € D(B).

In general it is not true that the weak*-generator of 7*(¢) uniquely deter-
mines 7 (¢) in the class of all weak*-continuous semigroups on X*, cf. Section
4.4 and the notes at the end of this chapter. However, T'(t) is the unique

Co-semigroup on X whose adjoint is weak*-generated by A*; this follows from
Theorems 1.3.1, 1.3.3 and Corollary 1.3.7 below.

Theorem 1.2.3. A* is the weak*-generator of T*(t).

Proof: Let B be the weak*-generator of T*(t) and fix * € D(A*). For x € X
arbitrary we have
t

1 1
lim ?<T*(f).1'* —rr) = ltilm —(A* (u'mk* / T (o)z” da).r)
)

t10 0t 0

1
= lim —/ (T* (o)A x™,x) do = (A™x™, x).
tio t Jo

Hence weak*-lim¢ o 1 (7*(t)z* — z*) exists and equals A*z*. This shows that
z* € D(B) and Bz* = A*z*, and therefore A* C B. To prove the converse
inclusion, fix * € D(B). Then for any x € D(A),

1
(Bz*,x) = ltilr{)l 7<T*(t);1:* — o, x) = (x¥, Ax).

This shows that 2* € D(A*) and A*z* = Bz*, proving that B C A*. ////



The adjoint semigroup 5

1.3. The semigroup dual space

Let T'(t) be a Cy-semigroup on X. The semigroup dual of X with respect
to T(t), notation X© (usually pronounced: X-sun), is defined as the linear
subspace of X* on which T*(¢) acts in a strongly continuous way:

X®:={z*e X*: ltilI})1||T*(t)a:* —z*|| = 0}.

It follows trivially from this definition that X© is T*(t)-invariant, which
by definition means that T*(t)X® C X© holds for all ¢ > 0. Also, since T'(t)
is locally bounded, X® is a closed subspace of X*.

Theorem 1.3.1. X is a closed, weak*-dense, T*(t)-invariant linear subspace
of X*. Moreover X© = D(A*).

Proof: We have already seen that X© is closed and T*(t)-invariant. Weak*-
denseness of X follows from the weak*-denseness of D(A*) and X© = D(A*),
which will be proved now.

Let z* € D(A*). Then for any z € X we have

t

NT* (t)a" —z*,2)] = |(A*(weak* /'T*(a)m* da),.r>|

0
t

= | [T () A% x) do| < t- ( sup |T()] ) 1A% |-
0<o<t

0

Hence
I7* (0 — 2l <t (sup TG ) 147"
0<o<t

which shows that D(A*) € X®. Since X is closed, also the norm closure
D(A*) belongs to X©.
For the converse inclusion let z® € X©. Then for any r € X we have

1t t ] i
|<Z/ T*(0)z® do — z°,z)| = |%/ (T*(0)2® — 2%, 2) do]
0 0

< ( sup ||T*(0)z® — 2| ) lz|-

0<o<t

Hence

I . . .
H—/ T*(o)z™ do — 2°|| < sup ||[T*(0)z® —z®|| — 0 ast|O
t Jo 0<o<t

since ¥ € X®. But 1 f[f T*(0)z® do € D(A*), and thus we have shown that

z® € D(A*). ///f
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If X is reflexive, then by Theorem 1.3.1 the subspace X“ is weakly dense,
hence norm dense by the Hahn-Banach theorem. Since X is also closed we
obtain:

Corollary 1.3.2. If X is reflexive, then T*(t) is strongly continuous.

This corollary shows that adjoint semigroup theory reduces to a triviality
in reflexive Banach spaces.

Let T®(t) denote the restriction of T*(t) to the T (t)-invariant subspace
X, Since X is closed, X is a Banach space and it is clear from the definition
of X® that T (t) is a strongly continuous semigroup on X . We will call T ()
the strongly continuous adjoint of T'(t). Let its generator be A”. The following
theorem gives a precise description of A® in terms of A*.

If (B,D(B)) is a linear operator on a Banach space Y and Z is a linear
subspace of Y containing D(B), then the part of B in Z is the operator By,
defined by

D(Bz)={y € D(B): Bye€ Z};
Bz y:= By, ye D(Bz).

Theorem 1.3.3. AY is the part of A* in X©.

Proof: Let B be the part of A* in X®. If 2 € D(A"), then

e L @ 0y _ i L (O (411 Oy _ AD..C
ltlllg;(T D)z —x )—11111})11‘(]“ (t)x ¥) = A%z",

where the limits are in the strong sense. Hence these limits exist also in the
weak*-sense, so by Theorem 1.2.3 it follows that ¥ € D(A*) and A*z® =
A®z® € X©. This proves that A C B.

To prove the converse inclusion, let * € D(B). This means that z* €
D(A*) and A*z* € X©. But this implies that

|
—
~
G
—
~
—
Xy
*
I
X}
*
~
I

1 t
(T*(t)x* — r*) = ?A*(u'mk*/ T (o)x* (10)

0

~ | = | =

t 1t
—weak” / T (o)A x" do = —/ T (o)A 2" do.

J0O JO

The integrand of the last integral being continuous since A*r* € X, letting
t | 0 gives

3 1 © * * * ok
lf/lf})l;(T‘)(f).’I.’ —z*) = A*z".

This shows that 2* € D(A”) and AYz* = A*z*, that is, BC AY. ////

Corollary 1.3.4. A* is the weak*-closure of A”.
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Proof: Since A* is a weak*-closed operator it suffices to prove that the graph of
A® is weak*-dense in the graph of A*. Let x* € D(A*). Since D(A*) C X© we
have %f(: T*(0)z* do € D(A®) and lim; o + f”' T*(o)x* do = x*. Moreover,
taking the weak*-limit for ¢ | 0 in

A*(% /UL T (0)z* a’o) - %(T*(t)r* — '),

|
from Theorem 1.2.3 it follows that

t
ureak*-limA*(% / T"(o)x" d(r) = A'r".
0

10

1

Starting from the Cy-semigroup T@(¢), the duality construction can be
repeated. We define T“*(t) to be the adjoint of T®(¢) and write X“% for
(X“)®. Pronunciation X-sun-sun, or sometimes: X-bosom. T@®(t) and A““
are defined analogously. In order to relate T'(t) and T® (t), we will now show

that X can be identified with a closed subspace of X®®. To this end, define
the norm || - ||" on X by
)" == sup [(z%,x)],
rP€Byp

where Byo is the closed unit ball of X“. Note that ||z’ < ||z|| for all r € X.
Theorem 1.3.5. |- | is an equivalent norm.

Proof: Fix € > 0 and x € X arbitrary. Choose M such that ||T'(¢)|| < M for
all ¢ in some neighbourhood [0, 6) of 0. Choose x* € Bx« such that |(z*, z)| >
(1 = €)||z]|. Choose 0 < t < 6 so small that ||} f(: T(c)x do — || < €||x||. Then

|<%u'mk* / T (o)x" do,z)| = |<I*.} / T(o)z do)]

JO J 0O

2 (2", 2)| — ellz]] = (1 = 2€)[|x]].
Since weak* j(; T*(o)z* do € X© and [ jweak* fﬂt T*(o)x* do|| < M it fol-
lows that ||z]|" > M ~!(1 — 2¢) ||z||. Since € is arbitrary it follows that |z|’ >

M=zl /)

Note that we have actually shown a little bit more, viz. [|-||" < ||-[| < M||-|’,
with
M = limsup ||T'(t)]].
t10
Define a map j : X — X®* by (jr,z®) := (2@, z). Clearly ||j|| < 1 and
J(X) C XO9 If j(X) = X©© then X is said to be @-reflexive with respect to
T(t).
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Corollary 1.3.6. j is an embedding, and M~ < ||j|| < 1.

Thus we can identify X isomorphically with the closed subspace jX of
X®®, One has to be careful here, since in general this isomorphism is not
isometric. A counterexample is given in Section 2.3. The map j will be referred
to as the natural embedding of X into X©*. The following corollary says that
T9(t) and A®® can be regarded as extensions of T'(t) and A respectively.

Corollary 1.3.7. T©®(t) is an extension of jT(t) and A®® is an extension
of jA. Moreover, jD(A) = D(A°®)NjX.

Proof: For x € X and z© € X© we have
(T9O(t)jiz,20) = (jz, T(§)a®) = (TO(1)°, ) = (2, T(t)z),

so TO9(t)jz = jT(t)z. That A®®j extends jA is proved similarly. In partic-
ular jD(A) C D(A®®) N jX. If jz € D(A®®) N j X, then

o1 .1 .
Jj ltll%] Z(T(t)z —x) = ltlg)l ?(]T(t).r —jx)

L :
= lim (T (t)ja — jz) = A®ja
tlo t
shows that the left hand limit exists as an element of X©®. Since j X is closed

in X®® the limit belongs to jX. Applying j~! to the above identity shows
that © € D(A). ////

We close this section with some simple examples.

Example 1.3.8. Let T'(t) be a uniformly continuous semigroup. From
|IT*(t) — I|| = ||T(t) — I|} it is clear that also T*(t) is uniformly continuous, so
in particular 7 (¢) is strongly continuous.

Example 1.3.9. Let X = Cy(IR), the Banach space of continuous functions
on IR vanishing at infinity with the sup-norm. The formula

Tt)f(y) = fly+1)

defines a Cy-group on Cy(IR), called the translation group. In Chapter 7 it
is shown (in more generality) that Cy(IR)® = L!'(IR), where, by the Radon-
Nikodym theorem, we identify absolutely continuous measures in Cy(IR)* with
their density functions. Moreover, Co(IR)®® = BUC(IR), the Banach space
of bounded uniformly continuous functions on IR with the sup-norm. Clearly,
D(A) ={f € Cy(IR) : f’ exists and belongs to Cy(IR)}, and Af = f’. Similarly,
D(A*) is the set of all absolutely continuous measures ¢ whose Radon-Nikodym
derivative ' exist. It can be identified with N BV (IR), the space of L!-functions
f of bounded variation, normalized so that f(—oc) = 0. Also, D(A®) is the
subspace of D(A*) of all u with y’ absolutely continuous again. It can be iden-
tified with AC'(IR), the space of absolutely continuous L!-functions. Finally,
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D(A®*) consists of all bounded Lipschitz continuous functions and D(A®®) of
those whose derivative a.e. is in BUC(IR) again.
Similarly one defines the rotation group T'(t) on C(T), T the unit circle,
by
T(1)f(?) = f(e'®*D).

Then C(T)® = LY(T) and C(T)®® = C(T). In particular, C(T) is ¢-reflexive
with respect to T'(t).

Example 1.3.10. Let X =¢g or [?, 1 < p < 0o. Define T'(t) by
T(t)x, :=e ™z,

where x,, is the nth unit vector (0,0,..,0,1,0,..). This is a Cy-semigroup on
X and we have ¢ = I', (I")? = ¢y and (I")® = 19 for 1 < p < 0o, where
plHg =1

Example 1.3.11. Let X = Cy(IR) and define T(t) = I, T(t)f = P, * f for

t > 0, where
1 t

Py) = = —
W) = g

is the Poisson kernel. Then T'(t) is a Cy-semigroup on X satisfying T*(t)u =

P, * . One verifies that X© = LY(IR) and T*(#)X* C X for all t > 0 (cf.

[Pa3]).

1.4. The spectrum of A°®

For a linear operator (A, D(A)) on a Banach space X, define
o(A) :={\: the inverse (A — A)~! exists on X and is bounded},

where A ranges over the scalar field. The set go(A) is called the resolvent set of
A and its complement o(A) the spectrum. If A is not closed, then g(A) = 0.
Indeed, suppose A € p(A). Then (A — A)~! is a bounded linear operator whose
inverse A — A is easily seen to be closed. Hence A itself must be closed.

For A € g(A) we write R()\, A) :== (A— A)~!. The bounded linear operator
R(A, A) is called the resolvent of A. We have the so-called resolvent identity:
if A\, u € o(A), then

R(A, A) = R(p, A) = (n — AN R(A, A)R(p, A).

Lemma 1.4.1. If A is a densely defined closed operator on a Banach space
X, then o(A) = 9(A*) and for \ € p(A) we have R(\, A)* = R(\, A*).
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Proof: Suppose A € p(A). We will show that A € g(A*). For any z € X and
x* € D(A*) we have

(RN, A)* () — A%)z*, z) = (¥, )

and consequently R(A, A*)(A— A*)z* = x*. From the definition of A* it is easy
to see that R(\, A)*z* € D(A*) for all z* € X*, and for all z € D(A) we have

(A= AR\, A)'z*,z) = (z*, z).

Since D(A) is dense it follows that (A — A)R(\, A)*z* = 2*. We have shown
that R(A, A)* is a two sided inverse of A\ — A*, in other words A € p(A*) and
R(A, A*) = R(\, A)*.

Conversely, let A € p(A*). We will show that A € o(A). Injectivity of A\— A
is proved as we did above for A— A*. We prove that the range of A — A is dense
and closed. If the range were not dense, then there is a non-zero * € X* such
that (z*, (A—A)z) =0 for all z € D(A). Then z* € D(A*) and (A—A*)z* = 0.
From A € g(A*) it follows that * = 0, a contradiction. This proves denseness.
To prove closedness, let € D(A) be arbitrary and choose r* € Byx- such that
|(z*,z)| > 3|lz||. Let K := ||R(X, A*)||~. Then

1A — Azl > KR A")z*, (A — A)a)]
= KA~ ADROL A)e" ) > el

Now if (z,) is a sequence such that lim, ... (A — A)z, = y, then the above
inequality implies that (z,) is a Cauchy sequence, say with limit z. Since A is

closed we have z € D(A) and y = (A — A)z.  ////

Let R(\, A)” denote the restriction of R()\, A)* to the R(\, A)*-invariant
subspace X .

Theorem 1.4.2. If A is the generator of a Cy-semigroup on X, then o(A) =
o(A*) = p(A®) and R(\, A)® = R(\, A®) for all X € p(A).

Proof: The identity o(A) = o(A*) was proved in Lemma 1.4.1. Let A € p(A).
As in the proof of 1.4.1 and by using Theorem 1.3.3 we have R(\, A)“(\ —
ANz® = 2@ for all 29 € D(A®) and (A — A9)R(X\, A)“z® = 2@ for all
% € X9, Hence A € o(A“ and R(\, A%) = R(\, A)"~.

Conversely, let A € o(A®). If (A — A)x = 0 for some x € D(A), then for
all 2* € D(A*) we have

((A=A")z" z) = (", (A= A)x) =0,

so r annihilates the range of A — A*. In particular x annihilates the range of
X — A®, which equals X© since A € p(A®). By the weak*-denseness of X it
follows that = 0, so A — A is injective. Next, A — A has dense range: if not,
then some non-zero z* € X* annihilates this range. Then z* € D(A*) and
(A—A*)z* = 0, so by Theorem 1.3.3 we have z* € D(A”) and (A — A®)z* = 0,
a contradiction to A € o(A®). For the proof that the range of A — A is closed
one can copy the argument in Lemma 1.4.1, the only difference being that now
Theorem 1.3.5 must be invoked. ////



