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Preface

The single most significant development in digital systems design in recent
years has been the advent of the microprocessor, a central processing unit
integrated on a single chip of silicon. The processing power and economics of
the microprocessor have had a tremendous impact on the way digital systems
are designed and on their scope of application.

This book is about the microprocessor. It is also about its related integrated
circuits and the hardware and software design of microprocessor based systems.
Its purpose is to first provide the reader with a thorough understanding of the
basic hardware and software concepts necessary for the design of micro-
processor based systems, and, further, to provide the reader with an in-depth
knowledge of specific actual devices and the attendant practical considerations
and design techniques necessary to effectively design systems using them.

A unique feature of this book is its utilization of a single microprocessor, the
8085A, as the example used to illustrate fundamental concepts. Use of a single
microprocessor as the instructional example allows an increased depth of
coverage of the operation, features, and limitations of a real device.

In addition, it allows use of a single consistent set of signals and signal
names for interfacing the many logical devices which constitute a micro-
processor system. Use of a single set of signal names simplifies the reader’s task
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xv Preface

in understanding hardware interfacing concepts and the functional operation of
various LSI devices.

The 8085A is a general purpose 8-bit microprocessor. This microprocessor
was chosen because of its widespread use in industrial applications and its
widespread support. This support manifests itself in the form of documentation,
application notes, and software and hardware development aids for the 8085A.
In addition, there exists a large family of peripheral LSI devices which are
designed to be compatible with the 8085A. Because of its wide applicability, the
reader will find that the knowledge gained about the 8085A and its support
devices is immediately applicable to many actual designs in industry.

A further advantage of studying a single microprocessor in depth is that the
reader not only learns of the features of the device but also learns that with these
features come attendant limitations which must be dealt with in any practical
application. It should be noted that a reader following a device specific instruc-
tional approach will find that once a specific microprocessor and its application
in digital system design has been mastered, it is relatively easy to understand the
operation and application of other microprocessors from a study of the manu-
facturers” user manuals and aoplication notes. This has been the experience of
university and industry students who have followed this approach in the author’s
microprocessor courses over the past several years.

The design of microprocessor systems requires a knowledge of both hard-
ware and software. It is assumed that the reader has a basic knowledge of digital
hardware at the gate and flip-flop levels. This material can be found in any
introductory book on digital systems design. The software concepts in this book
are illustrated using assembly language for the 8085A. However, prior knowl-
edge of assembly language programming is not necessary. Some general knowl-
edge of computer programming in a high level language is desirable.

The goal has been to introduce the necessary hardware and software
concepts in an elementary, systematic, and integrated fashion and to logically
build upon these concepts. While the study of no single text can provide mastery
in a subject area, it is believed that this text will provide the reader with a solid
foundation for the development of proficiency in the design of microprocessor
systems.

This book covers the topics recommended for inclusion in the course DL-3
Microprocessor Systems as part of a computer science and engineering curricu-
lum as proposed by the Model Curriculum Subcommittee of the IEEE Com-
puter Society.'
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Introduction

A technological advance which is affecting the practice of logic
design is the existence of the LS| microprocessor; a data flow and
control on one to several LS| chips. In this case the logic
designer’s building blocks are data flows, control stores, and
read/write memory chips. He arranges the chips and programs
the control store.

Glen G. Langdon, Jr.*
*Logic Design: A Review of Theory and Practice. New York: Academic Press, Inc., 1974.




1.1 THE IMPACT OF LSI ON LOGIC DESIGN

The basic goal of logic design is a system that functions as required and is
reliable, easy to maintain, and cost effective. As a rule, simplicity of design is the
key to the attainment of this goal. Whereas an overly complex design might
meet the first requirement, it undoubtedly would fall short in the other areas.

In practical design, of course, cost effectiveness is of great importance.
Generally speaking, the most cost effective design is usually the simplest and,
because of its simplicity, more reliable and easier to maintain.

The total cost of a design at the system level includes expenditures for
development, components, tooling, assembly, testing, system repair and mainte-
nance, as well as a spare parts inventory. [1,2] This total cost is directly
proportional to the number of components in a system, and the number of
components has, in the past, been directly proportional to the number of gates
and flip-flops. Conventional switching theoretic techniques of digital systems
design are geared toward minimizing the number of gates and flip-flops, thereby
minimizing the number of components in order to minimize system cost. See
Figs. 1.1-1(a) and 1.1-1(b). These minimization techniques were developed
originally for systems which used relays to implement gates and flip-flops. As
technology advanced, vacuum tubes, then discrete component solid state devices
replaced relays. Since the number of components was still proportional to the
number of gates and flip-flops, even in designs constructed from vacuum tubes
or discrete component solid state devices, the switching theoretic design tech-
niques were still effective in minimizing system cost.

However, in the early 1960’s, Small Scale Integration, SSI, provided small
scale integrated circuits with as many as 12 gates integrated on a single silicon
chip and packaged as a single multilead component. With integrated circuits,
ICs, the number of components in a system was no longer proportional to the
number of gates and flip-flops but was simply equivalent to the number of IC
packages in the system. Thus, the reduction of system cost was dependent on the
reduction of the total number of IC packages required. Although system
designers could still apply the same switching theoretic techniques, simplifica-
tion of a circuit which reduced the required number of gates or flip-flops
resulted in a savings only if it also reduced the number of IC packages.

As IC technology advanced further, Medium Scale Integration, MSI, pro-
vided circuits with a logic complexity of 13 to 99 equivalent gates per package,
and Large Scale Integration, LSI, provided circuits with a logic complexity of
100 or more equivalent gates per package, seriously compromising the effective-
ness of conventional switching theoretic design techniques in reducing system
cost. Fabrication techniques for MSI and LSI circuits, which make it as
inexpensive to put 100 or more gates on a chip as 10 destroyed the gate-flip-
flop /component-count relationship, and now, for systems implemented with
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Figure 1.1-2. Semiconductor learning curve.

integrated circuits, total cost is directly proportional to the number of IC
packages.'

Maximum utilization of LSI results in decreased system costs because LSI
circuits provide more logic per package and require less power consumption.
And reducing the number of lead connections by replacing many SSI and MSI
packages with fewer LSI packages provides greater reliability, since a common
source of failure for an IC is at a lead connection to the chip.

The economics of IC manufacture demand that entire functions requiring
large numbers of gates be fabricated on a single chip. [3] The complexity of the
functions is limited primarily by the chip area required for their fabrication. This
area must not exceed that compatible with a high manufacturing yield. Yield is
the percentage of acceptable ICs resulting from the manufacturing process. To
limit the chip area, the number of external connections to the chip, which
provide input and output data and control signals, must also be limited.

When medium and large scale integrated functions are produced in large
quantities, the production cost can be amortized so that the price of these
functions 1s far less than that of the equivalent functions implemented with SSI
circuits. Utilization of standard MSI and LSI functions, although they might
include gates which are unused in a particular application, is usually more
economical than designing minimized logic implemented at the gate level. See
Fig. 1.1-1(c).

'Exceptions to this relationship occur in LSI systems which use microprocessors. In some
applications software development costs may have a greater impact on total system cost than the
hardware component count.



