COMPUTER HARDWARE
DESCRIPTION LANGUAGES
AND THEIR APPLICATIONS

edited by
m, breuer & r. hartenstein

COMPUTER HARDWARE
DESCRIPTION LANGUAGES
AND THEIR APPLICATIONS

Proceedings of the IFIP TC-10 Fifth International Conference on
Computer Hardware Description Languages and Their Applications
Kaiserslautern, F.R.G., 7-9 September, 1981

edited by

M. BREUER

University of Southern California
U.S.A

R. HARTENSTEIN
University of Kaiserslautern
F.R.G.

93 N 98
e

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM = NEW YORK » OXFORD

© IFIP, 1981

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 86279 X

Published by:
NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM « NEW YORK « OXFORD

Sole distributors for the U.S.A. and Canada
ELSEVIER NORTH-HOLLAND, INC.

52 Vanderbilt Avenue

New York, N.Y. 10017

Library of Congress Cataloging in Publication Data

IFIP TC-10 International Conference on Computer
Hardware Description Langusges and Their Ap-
plications (5th : 1931 : kaiserslauterr,

Gerany)
Computer hardware description languages and their
applications.

Includes index.

1. Electronic digital computers--Design and
construction--Data processirg--Congresses.
I. Rreuer, Melvin A. II. Hirvenstein, Reiner.
III. IFIr Te-au. IV, Title.
TK7832.3.127 1981 £21.3813'582'0235L2 31-16873
ISBN O-LLL-86279-X AACRz

PRINTED IN THE NETHERLANDS

PREFACE

This volume is the final version of the proceedings of "CHDL '81",
which also includes invited papers and other presentations not printed
in the preprints. CHDL '81 means: the 5th International Symposium on
Computer Hardware Description Languages and their Applications, held.
September 1981 at Kaiserslautern University, F.R.G. This Symposium is
the fifth one in a series of symposia having been held in New
Brunswick (New Jersey), Darmstadt, F.R.G., New York and Palo Alto
(California). All these preceding meetings have been organized as
ACM/IEEE events, whereas this fifth one was organized by IFIP WG 10.2
in cooperation with ACM, IEEE Computer Society, the European Research
Office, the NTG (Nachrichtentechnische Gesellschaft), the GI (Gesell-
schaft fuer Informatik), and the Commission of the European Economic
Community.

We appreciate the valuable publicity support provided by these organ-
izations. We also gratefully acknowledge the financial support by the
European Research Office (London), CTM Computertechnik Miller G.m.b.H.
(Konstanz), Honeywell Bull A.G., (Kb6ln), Nixdorf Computer (Paderborn),
Kienzle Apparate G.m.b.H.(Villingen), and Digital Equipment G.m.b.H.
(Miitnchen) . This list does not include financial support contributed
later than June 1981 when this preface was written.

" The most importance part of the work was done by Professor Melvin
Breuer (University of Southern California), who served as the Program
Chairman. We gratefully acknowledge his excellent work in solliciting
papers, organizing the reviewing process, and setting up the program.
It should be mentioned that the very careful selection of papers (at
least three referees per paper), and a large number of submissions
helped to assemble a program of very high quality. We also appreciate
the services of the members of the Program Committee: J. Duley
(Vice-Chairman), M. Barbacci (USA), D. Borrione (F), H. de Man (B),
H.W. Lawson jr. (S), D. Lewin (GB), A. Parker (USA), R. Piloty (D),
and W. vanCleemput (USA).

Of course without the contributions of all the submitting authors from
all over the world it would not have been possible to assemble a really
international program of such high quality. We appreciate all their
efforts. We also appreciate the efforts spent in the preparation of
papers which were not accepted because of the large number of high
guality submissions.

Especially valuable have bheen the efforts of D. Borrione, publicity
chairperson for Europe, and of W. Sherwood, publicity chairman for the
rest of the world. Let me especially acknowledge the layout of the
call for papers, the advance program, the program booklet, and also
part of this volume, which was provided by W. Sherwood. The work of
the Finance Chairman, Dr. Egon Horbst, and of the Local Organization
Chairman, Professor Dieter Maass, is also gratefully acknowledged.

We should be aware of the fact that the result of their difficult and
very important work was visible temporarily only since it is neither
published nor distributed.

vi Preface

Last, but not least, Professor Robert Piloty and Dr. Mario Barbacci
should be mentioned. Professor Piloty, as Chairman of IFIP Technical
Committee TC-10, and Dr. Mario Barbacci, as Chairman of IFIP Working
Group WG 10.2, brought this conference series to the attention of IFIP.
It was due to their efforts that the organization of this series of
symposia was conveyed to IFIP.

Reiner W. Hartenstein
General Chairman IFIP CHDL '81

A MESSAGE FROM THE PROGRAM CHAIRMAN

Professor Melvin A. Breuer

University of Southern California
Los Angeles, California 90007

Welcome to the Fifth International Conference on Computer Hard-
ware Description Languages and their Applications. I believe this
year's conference will be particularly exciting and informative,
and am sure that these proceedings will be a valuable contribution
to the technical literature. From a review of the submitted papers,
it is clear that the study of CHDLs is entering a new era of matur-
ity. Though a significant number of submitted papers dealt with
traditional subjects, such as describing new CHDLs, many papers
were concerned with formal aspects of CHDLs and new application
areas. Some of these topics cover in depth analysis of some attri-
butes of CHDLs, such as formal definitions of syntax and semantics
and the impact of these properties on verification, as well as for-
mal studies on behavior and structures.

In Table 1 we indicate the number of papers submitted and ac-
cepted, broken down by country.

TABLE 1: DISTRIBUTION OF PAPERS

Country Number Submitted Number Accepted
Australia 2 1
Bulgaria 1 0
Canada 1 1
England 2 2
France 4 2
Germany 8 3
Hungary 3 X
India 2 0
Italy 1 1
Japan 2 2
The Netherlands 1 0
New Zealand 1 0
Poland 3)
Spain 1 0
Sweden 1 0
Switzerland 1 1
UsSA i kil 6

>
w
N
=

In addition to the submitted papers, the program committee so-
licited several outstanding researchers to present invited surveys
and/or tutorials. Since a written record of these presentations

viii M._A. Breuer

does not appear in these proceedings, I would like to acknowledge
these people here. Their contribution to the quality of this con-
ference is substantial, and is greatly appreciated.

SYNTAX AND SEMANTIC REQUIREMENTS OF CHDLs

M. Barbacci
Carnegie-Mellon University, Pittsburgh, PA USA

VERIFICATION OF CHDL DESCRIPTIONS

S. Crocker
USC Information Sciences Institute, Marina del Rey, CA USA

AUTOMATED LOGIC SYNTHESIS

J. Darringer
IBM-Thomas J. Watson Research Center, Yorktown Heights, NY USA

EXPERTENCES IN THE USE OF CHDLs FOR CUSTOM DESIGN OF CMOS
INTEGRATED CIRCUITS

U. Hedengran
The Royal Institute of Technology, Stockholm, S

DESCRIPTICN LANGUAGE-BASED INTEGRATED CAD SYSTEM FOR ELECTRONIC
AND LOGICAL DESIGN

J. Mermet
IMAG, Grenoble, F

HIGH-LEVEL LANGUAGE AND PROGRAMMING ENVIRONMENT REQUIREMENTS
FOR INTEGRATED VLSI CAD SYSTEMS

A.C. Parker
University of Southern California, Los Angeles, CA USA

CONLAN: A METALANGUAGE FOR CHDLs

R. Piloty
Technische Hochschule Darmstadt, Darmstadt, [

MODELING AND STYLE — A USER'S VIEWPOINT

W. Sherwood
Digital Equipment Corporation, Hudson, MA USA

CAD TOOLS FOR THE SYNTHESIS OF HARDWARE AND SOFTWARE

G. Zimmerman
Honeywell, Incorporated, Bloomington, MN USA

It is my pleasure to acknowledge the tremendous help I have re-
ceived from my colleagues in processing the 45 papers received, al-
most all of which were sent out for three reviews. First, I would
like to thank Professor Alice Parker who helped in almost all aspects
of the review process. Secondly, I would like to thank Jim Duley,
Alice Parker and Reiner Hartenstein who met with me on April 14 to
design the program. Finally, I would like to thank and acknowledge
the contributions of the reviewers without whose effort a fair an-
alysis of the papers could not have been made.

Alali
Anderson
Kakowski
Barbacci
Bixler
Borrione
Budkowski
Camposano
Ching
Christley
Chu

Clary
Cohen
Cooper
Cory
Crocker
Crowley
Darringer
Dasgputa
Dietmeyer °*
Djordjevich
Dortmans
Duley
Durante

E.

W.
R.

H.
V.
c.
D.

A Message from the Program Chairman

Estrin
Eveking
Foulk
Frankel
Fuller
Gordon
Goodell
Grason
Hartenstein
Hassler
Hautin
Hayes
Hellstrand
Hill
Horbst
Ibbett
Johnson
Klar
Kornerup
Lawson
Lesser
Leung
Lewin

G
R
H
P
H
E
P
M
P
J
J
R
G

WOPW»<UOPDR

.

Lipovski
Little
Loomis
Losleban
de Man
Marino
Marwedel
Medina
Meinen
Mercier
Mermet
Mueller
Musgrave
McFarland
McGuffin
Nagle
Nash
Ohno
Ohsawa
Overman
Parker
Patel
Piloty

Rao
Razouk
Rose
Rosenstiel
Sastry
Sherwood
Shiva
Shriver
Siewiorek
Silvester
Singh
Snow

Su

Tokoro
Tracey
Tlxdieh
van Cleemput
Vegdahl
Vernon
Villar
Visser
Yoeli
Zaky
Zimmerman

SEMANTICS AND VERIFICATION

COMPUTER HARDWARE DESCRIPTION LANGUAGES AND
THEIR APPLICATIONS: M. Breuer, R. Hartenstein (eds)
North-Hglland Publishing Company

© IFIp, 1981

THE WORKER MODEL OF EVALUATION FOR
COMPUTER HARDWARE DESCRIPTION LANGUAGES

Dominique Borrione
Laboratoire IMAG
B. P. 53X
38041 Grenoble Cedex - FRANCE

This paper presents an operational model to define the
semantics of CHUL's. This model is expressed in terms of a
hierarchy of workers who cammunicate by exchanging messages.
The use of the model to specify concurrency, parameter passing
policies and time behavior is demonstrated. CONLAN function,
activity and description ssgments are taken as examples.

I - INTRODUCTION

In recent years, considerable attention has been given to the formal definition of
programming language semantics; a number of methods (operational [LiZ.75],
axiomatic [Hoa.69], denotational [Ten.76]) can now be applied tc express the
semantics of sequential programs [Liv.78].

In the meantime, while many new Computer Hardware Description fanguages (CHDL)
were being published [Cam.74, Lip.77], few of them, if any, had their constructs
explained by a precise model: natural language sentences, at best diagrams,
continue to prevail. One of the few attempts to give a formal specification of
hardware [FrS.79] seems to be applicable only at a very abstract and early stage
of architecture design. Nevertheless, if one considers the many levels of detail
(gate network, register transfer, microprogram, ...up to camplex system
architecture) for which CHDL's have been defined, the variety and caomplexity of
language constructs far outgrow those of programming larguage constructs. As a
simple example, programming languages have a single concept of "variable", whereas
CHDL's have a broader notion of "carrier", split into terminals, clocks, registers
of various kinds etc..., all with different time, loading and memory properties.

A method for defining unambiguouslv the meaning of CHDL primitives for a broad
range of description levels is ir.c:? - .2cessity, both for the implementors of
such languages, and for the hardware aesigners who use them. And the methods
developped for programming languages, even those proposed for non-deterministic
and concurrent processes [Kah.79] fail to be applicable to the semantic definition
of CHDL's, or became too camplex and awkward, when timing, elementary parallelism
and memory properties have to be expressed.

It is one of the objectives of the TONLAN Working Group to remedy this deficiency
of existing CHDL's, by proposing a formal method for the definition of CHDL's at
various levels of details [PBB.83d]. This method is based on the concept of
language derivation, pictured on figure 1. A new language LIK is derived fram an
already defined language LI by the definition of new TYPE, FUNCTION, ACTIVITY and
DESCRIPTION segments in terms of those known in LI. This mechanism ensures that,
starting with BCL, all the languages of the CONLAN family are formally defined.

However, this semantic definition would be incamplete if the implied lowest level
PSCL, and the various categories of segments, were not themselves defined in terms
of a precise semantic model. It is the purpose of this paper to present the
salient features of this model of camputation.

4 D. Borrione

The Worker Model of Evaluation has been inspired by the Actor Model of Hewitt
[HeB.77a-b, Hew.77]. Although specifically designed for OONIAN, this model is so
general that it can be used to represent the behavior of any discrete description
language, not necessarily defined as a CONLAN family member. In the following
however, we shall give as an illustration of the model the evaluation of selected
CONIAN primitives. The reader is referred to [PBB.8%a-c] for a presentation of
PSCL, BCL, of FUNCTION, ACTIVITY and DESCRIPTION segments, and of the model of
time in terms of intervals and steps. .

II - PRESENTATION OF THE WORKER MODEL

The evaluation of a description is campared to a task to be performed in a mill.
A number of workers are present, in fact there are as many as needed. There is
one boss who is responsible for starting the evaluation and getting the result.
Workers may be hired and fired. Workers may be busy or waiting for samething to
do. A worker starts working when another worker asks him to do so, and he always
respords to the one who asked him for the task. Communication between workers is
done by questions and answers, which will be called messages.

Workers are highly specialized; some can do only integer addition, others can do
only division. Workers responsible for complex tasks ask other workers
specialized in appropriate subtasks for their assistance. The global task is thus
performed by a hierarchical team.

Workers do not know all the other workers in the team. A worker knows those
workers who cammand him, and those that he cammands.

No worker can do more than one task at a time. If two or more commands are
simultaneously directed to the same worker, that worker randamly selects and
responds to each of them in sequence. We are not interested in the physical time
which is necessary for messages to arrive to their destination, nor for tasks to
be performed. We do assume however that this physical time is finite, and that
every message gets serviced in finite time after its arrival. The only point of
interest is the before-after relationship between all the ges. A ge is
sent before a task is performed before a response is returned.

A task of evaluation is associated with every primitive statement, every segment
invocation . A worker is associated with each task. Moreover, there is a worker
for each carrier declared and each instance of description used. Each worker has
a unique name.

1 - Context

Every worker has a special sign called "context". The context is either his own
name, or the name of a worker placed higher in the hierarchy. Only a restricted
category of workers has the privilege to give their name as context. These
workers then always have their own name as context: in CONLAN, they correspond to
instances of descriptions. The boss of the team is such a worker.

A worker gets his context when he is hired, and keeps it thereafter, according to
the following rule:
Let A and B be two workers such that A cammands B. If B is not his own
context, then B has the same context as A.

A worker always writes his context on his requests; this information is used by
the receiver to verify his access rights, or to hire workers with the same
context. The context, in the worker model, serves to describe scope rules.

The Worker Model of Evaluation S

2 - Messages

There is a fixed number of categories of messages. Each category of messages is
directed to, or emitted by, workers attached to a given category of segments. For
instance, a COMPUTE message is always directed to a worker attached to a function,
and a RESULT message is always emitted by a worker attached to a function when he
returns the camputed function result.

A message is therefore constituted of a keyword, defining its category, possibly
followed by one or more parameters; a message includes the name of the worker who
has sent it, and his context when appropriate.

A message can either be readily understood by the worker who receives it, or be
too camplex and require the cooperation of other workers, to evaluate it.
Parameters that are immediately understood are constant denotations, and declared
odbject names. Parameters that require evaluation are expressions.

3 - General principles of evaluation

The hardware designer who describes a digital system defines a DESCRIPTION
segment. Campiling this segment corresponds, in our model, to the creation of a
team of workers for the task of evaluating the outer DESCRIPTION segment. The
workers of the team represent the semantics of all segments arnd carriers in the
DESCRIPTION.

The total number of workers varies during evaluation. Caompile time actions
correspond to hiring all workers who will be present during the whole evaluation
process, and establishing their hierarchical links. In CONLAN one "permanent"
worker is hired for each instance of DESCRIPTION used, for each invocation of a
STATIC FUNCTION or ACTIVITY segment, and for each one of their local carriers.
The workers who are dynamically hired and fired correspond to non static operation
invocations, and their local carriers.

Messages are being exchanged when the hardware designer asks for an evaluation of
his description. Two special workers, outside the hierarchical team, pre-exist:

The "enviromment" worker serves as interface between the hardware designer and
the team, interprets the evaluation cammands, and acts as camunication
supervisor. The enviromment is responsible for sending the first message to
the team boss to start the evaluation.

The ‘"recruiter" is capable of providing new workers when needed, and is
directed all hiring requests.

Upon receipt of his initiating message, the team boss
- serds to the recruiter a set of messages to hire all necessary temporary
workers.
- when all hired workers are received, sends to each worker associated to a
subtask an initiating message.

The process is recursively repeated, down the hierarchy of workers, until workers
associated to elementary tasks have been initiated.

A worker responsible for an elementary task performs his task immediately, and
responds to the one who cammanded him. A worker responsible for a camplex task,
once all subtasks have been initiated, waits until all answers have been received.
If at least one answer is an error message, an error is answered to the one who
canmanded the task. Otherwise, after additional checks when necessary, the worker
fires all temporary workers that he cammanded, and gives a positive answer to the
one who cammanded the task. Answer messages are transmitted back along the
hierarchy, up to the team boss.

6 D. Borrione

Definition

A step of evaluation is the set of all messages being exchanged between the
initiating message that the enviromment sends to the team boss, and the
response of the team boss to the envirorment.

After one step of evaluation, depending upon the semantics of the language in
which the description has Dbeen written, and stability conditions which are
required or not, a new step is initiated, or this is the end of the evaluation.

Rule
A step of evaluation has no error iff it contains no error message.

An equivalent statement is:

A step of evaluation has no error iff the team boss has received no
error message for this step.

IIT — MESSAGES NND MESSAGE SKELETONS

1 - Messages

A message is a 4-tuple in which the second and fourth camponents may be empty:
(worker_name, context, keyword, parameter_list)

where worker name and context are respectively the name and the context of the
sender of the message. We shall use an informal notation to write messages:

worker name: context, keyword(pa.rameter_list)

The context part is not necessary on all messages, and in the following we shall
indicate it only when its presence is required:
worker name: keyword (parameter_list)

If the parameter list is empty, we abbreviate further:
worker name: keyword -

Let "w" be a worker, and "c" his context. Messages exchanged during one step of
evaluation belong to one of the following categories:

-w: ¢, EVAL(pl, p2, ... pn)
directs a segment worker to evaluate his actual parameters

- w: EVALUATED
answer of a segment worker that has successfully evaluated all actual
parameters.

- w: C, START .
directs a segment worker to perform the task described by the segment body

- w: DONE
answer of a worker who has campleted his evaluation task without error

- w: ¢, OOMPUTE(pl, p2, ... pi)
directs a function worker to evaluate his actual parameters, his body (if any)
and his return expression

- w: RESULT(r)
answer of a function worker, where "r" is the result of the camputation

The Worker Model of Evaluation 7

- w: ERROR(explanation)
answer of a worker who could not successfully fulfil his task. "“explanation"
is a string, which explains the reason of the failure. "explanation" may be
empty, or a very sophisticated sentence, depending upon the implementation.

In messages EVAL and COMPUTE, the pi are the actual parameters of the operation.
An actual parameter can be :

— a constant

- a worker name (corresponding to a declared object)

- an expression, written in prefix notation

Messages are also exchanged between operation segments and the recruiter, to
- hire a worker for an internal operation (nested invocations)
—-get a fresh carrier (local declarations of carriers in operation segments)

Such messages take the following form :

- w: ¢, SEND(operation designator)
request to the recruiter to provide a worker for the operation specified

- w: ¢, SEND(type designator)
request to the recruiter to provide a carrier worker of the type specified

- recruiter: RECEIVE(worker name)
answer of the recruiter, which provides the requested worker.

Other messages, with keywords TYPE, EMPTY, GET, SET, PUT are requests exclusively
addressed to carrier workers, and will be explained in the appropriate section.

In the following, to shorten the text, we shall write "function plus", or "plus",
instead of "the worker attached to function plus". Further, the transmission of
messages will be denoted with an arrow, with the receiver of the message
identified at the point.

wl: message —-> w2 is to be interpreted as w2 receives "message" fram wl.
wl <- w2: message 1is to be intervreted as wl receives "message" fram w2.
The second form is preferred for a returned object, or an acknowledgement.

To represent a set of messages, we shall make a distinction between concurrent and
sequential exchanges. The following format indicates concurrent messages:

wl : messagel -> wrl
w2 : message2 —> wr2
w3 : message3 -> wr3

wn : messagen —> wrn
whereas sequential messages are indicated by:

wl : messagel —> wrl
+

w2 : message2 —> wr2
+

w3 : message3 -> wr3
|.

+
wn : messagen —> wrn

8 D. Borrione

2 - Message skeletons

A worker interacts with other workers by accepting and sending messages.
Depending upon his task, a worker is capable of accepting same messages, and not
others. The description of acceptable messages, and of their appropriate answer,
is done in terms of "message skeletons".

A message skeleton is a 4-tuple, with the same camponents as a message, and
written in a similar format, in which one or several camponents except the keyword
is a formal element. A formal element is an identifier in which the first
character is "$".

Two formmal elements are pre—-defined:
- 3me designates the worker himself
- Smine designates his own context

When a worker receives a message, he campares it with the skeletons of acceptable
messages. Recognition is first attempted using the keyword. If a match is found,
and all non-formal caunponents of the skeleton are identical to the corresponding
ones in the received message, then the formal camponents of the skeleton are
evaluated. Formal camponents in first and second position are immediately
replaced. Formal elements in the parameter list are typed; the actual parameters
in the received message may require hiring of function workers for their
evaluation, and the results must belong to the types specified .

If no skeleton can match a received message, the message is refused, and an error
message is answerad to the sender.

Examples of message skeletons

Sa: $c, EVAL ($pl:int, $p2:bool)

$2: EVALUATED

recruiter: RECEIVE($237)

Sme: S$mine, SEND(int.+) int.+ designates plus on integers

Rules

The scope of a formal element is limited to the description of the task
in which it appears.

In a task description, all the occurrences of the same formal element
stand for the same worker name or the same object. When a formal
element is identified, all the occurences of that formal name in the
task description are replaced with the object or the worker name that it
represents, for the duration of the task being performed.

3- Description of message emission and reception

The specification of an acceptable message, in a task description, is written:
** message-skeleton
where "**" js read as "receive".

The specification of a message to be sent, in a task description, is written:
message-skeleton => receiver
or receiver <= message-skeleton
where "<=" or "=>" is read as "send", and "receiver" is either a formal name or
the recruiter.

The Worker Model of Evaluation 9

Message receptions and emissions can be indicated as un-ordered, or sequential,
grouped or individually, using the same writing conventions as the format that we
adopted in paragraph 1 for actual messages arriving to their actual receiver.

Example

The following text describes a task of multiplication by 2 on integers. Lines are
numbered for convenience.

(1) ** $1: $2, COMPUTE ($p:int)

(2) $me: ;mine, SEND(int.*) ==> recruiter
(3) ** re<+:ruir,er: RECEIVE (Smult)

(4) Sme: Sons OOMPUTE(Sp, 2) == Smult
(5) ** $m:1t: RESULT($twot imesp)

(6) s1 <=t Sme: RESULT(twotimesp)

This script specifies the task as 6 sequential exchanges of messages. It reads as
follows:

(1) Receive fram $1, with context $2, a OOMPUTE message with one integer
parameter $p.

(2) Hire a worker for integer multiplication.

(3) Receive this worker, called 3mult.

(4) Send to 3mult a COMPUTE message with parameters $p and 2.

(5) Receive fram $mult the result of the multiplication.

(6) Send this result to $1.

Let "a" be a worker, "ca" the context of "a", "times2" the name of a worker hired
for the above task, and "m" a multiplication worker. an execution of the
multiplication of 17 by 2 results in the following exchanges of actual messages:

a: ca, COMPUTE(1d) -> times2

tims;: ca, SEND(int.*) -> recruiter
tj.mes; <- recruiter: RECEIVE(m)
tim&S;: ca, COMPUTE(173,2) -> m
ti.mes; <= m: RESULT(23)

a <- :im&eZ: RESULT (29)

4 - Conditional forms

As in PLASMA, we adopt 2 conditional forms, written in a syntax close to that of a
case statement. The first one is used to test a formal name; the second one is
used to test a message. In both cases, the result of the test selects a sub-task
among several alternatives.

A formal name is tested with:
SELECT formal-name

(valuel: subtaskl)
(value2: subtask2)

