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PREFACE

The mechanical behavior of materials with oriented internal struc-
tures, produced by formation processes and manufacturing procedures
(crystal arrangements, stratification, fibrosity, porosity, etc.) or in-
duced by permanent deformation (anisotropic hardening, softening, creen
internal damage growth, etc.) requires a suitable mathematical modelling.
The properties of tensor valued functions of tensor variables constitute
a rational basis for a consistent mathematical modelling of complex mate-
rial behavior.

This book, which contains lectures presented at a CISM Advanced
School, presents the principles, methods and results of applications in
solid mechanics of the general laws governing tensor functions. The prin-
ciples of mathematical techniques employed to derive representations of
tensor functions are explained. The rules of specifying irreducible sets
of tensor invariants and tensor generators for various classes of mate-
rial symmetries are discussed. Representations of isotropic and anisotro-
pic tensor functions arederived, in order to develop the general inva-
riant forms of non-linear constitutive laws in mechanics of solids.

Within this approach, the mathematical modellization of the mate-
rials' mechanical response is explained and specific models are presented
in elasticity, plasticity, hardening, internal damage and failure, for
materials such as metals, composites, stratified rocks, consolidated soils
and granular materials. The approach specifies a rational way to develop
approximate theories and gives the necessary precision as to the number
and the type of independent variables entering the mechanical laws to be

used in engineering applications.



Experimental justifications as to the pertinence of the approach are
given on examples of composite materials, rolled sheet-steel and strati-
fied rocks. Information concerning proper experimental setting of tests
for materials with oriented internal structures is developed.

This book is addressed to specialists in solid mechanics, both theo-
retical and applied, material scientists concerned with metals and compo-
sites, specialists in soil and rock mechanics and to structural engineers
facing problems involving anisotropic and inelastic solids at various
environments, nonlinearity and couplings.

I wish here to pay homage to the memory of my deeply missed friend
Professor Antoni Sawczuk, co-coordinator of the CISM Advanced School. His
untimely death did not allow him to see the final fulfilment of our sha-
red project ; nevertheless, his help was invaluable in the preparatory
phase of the Advanced School.

I would like to take this opportunity to thank CISM for having pro-
vided lecturers and participants with a chance to work together on Appli-
cations of Tensor Functions in Solid Mechanics. I am indebted to Profes-
sor Giovanni Bianchi, Secretary General of CISM, for his help with the
organization of the School and to Miss Elsa Venir for her kindness and

efficiency.

Jean-Paul Boehler
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Chapter 1

PHYSICAL MOTIVATION

J.P. Boehler
University of Grenoble, France

1. INTRODUCTION

Theorems of representations for tensor functions are valuable for
modelling non-linear constitutive laws, particularly when the mechanical
response of the material depends on more than one tensor agency. It is
an approach that leads to the general invariant forms of the non-linear
constitutive equations andgives the number and type of the scalar varia-
bles involved.

These representations for tensor functions have proved to be even
more pertinent in attempts to model the mechanical behavior of anisotropic
materials, since here invariance conditions predominate and the number of
independent scalar variables cannot be found by simple arguments.

In this Chapter, we present experimental evidence of anisotropic
response of materials and show the complexity of phenomena observed,
which indicates the need for a rational and unified formulation of aniso-

tropic constitutive laws.
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Fig.l - Anisotropy of the elastic
modulus of rolled sheet-
steel (after [1]).

Fig.3 - Anisotropy of the elastic
modulus and compressive
strength of a natural clay
(after [3]).

Fig.2 - Anisotropy of the elastic

limit of rolled sheet-
steel (after [2]).
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Fig.4 -. Strength in simple compres-

sion for uniform and perio-
dically non-homogeneous
structure of diatomite
(after [4]).



Physical Motivation 5

2. DIFFERENT DOMAINS OF MECHANICAL ANTSOTROPY

Oriented internal structures of solids, such as oriented crystallo-
graphic axes, grains, particles, fissuration, cracks, cavities, etc...,
result on the macroscopic level in a directional mechanical response to
applied agencies. Different domains of the mechanical behavior can be
influenced.

Fig.l shows the variation of the elastic modulus E of rolled sheet-
steel with respect to the angle 6 between the direction of the tensile
stress and the rolling direction (after [1]), whereas the anisotropy of the
elastic limit R is presented in Fig.2 (after [2]). Anisotropy of the
elastic modulus E and strength R of a consolidated clay subjected to
oriented compressions is given in Fig.3 (after [3]).

According to the type of the oriented internal structure, the varia-
tion of mechanical characteristics, with respect to the orientation of
the material, may be continuous or discontinuous. This is shown in Fig.4
(after [4]), where the uniaxial compressive strength of diatomite, a
stratified soft rock, is traced versus the orientation 6 of the specimens
with respect to the normal of the strata. It is seen that the standard
compressive strength possesses a minimum within the range of inclination
of the strata. For a diatomite with marked layers of weaker strata, there
appears a sudden drop in the strength for inclinations ranging between 30°
and 45°.

In Fig.5, results regarding the strengthof different consolidated
clays in compression are presented (after [5, 6]) : a) range of variation
for London clay ; b) Little Belt clay ; c) Vienna clay ; d) Welland clay ;
e) experimental points for Grenoble clay. It is seen that the variation
of strength with the orientation of the privileged direction of transverse
isotropy is quite irregular. The strength either decreases, increases or
passes through an extremum when the inclination of the privileged direct-
ion changes with respect to the principal stress direction. For triaxial
tests on shales, Fig.6, the strength is plotted against this inclination
angle for several values of the confining pressure (after [7]). Two

remarks are appropriate in connection with the experimental results pre-



