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Purpose.
This book is intended primarily as a text for a single- or multi-semester course in ap-
plied mathematics for students in engineering or science. Beyond such a course, or
courses, it is intended that the book be useful for reference and for self-study. Thus,
explanations are sometimes more detailed than they might have been, common
difficulties are anticipated and discussed, and the writing is somewhat conversa-
tional.
It should be emphasized that by “self-study” we do not necessarily mean outside
- the context of a formal course. Rather, we are interested in possibilities even within
course settings. For if the text can be understpod through self-study, then the in-
structor has more instructional options available. For instance, in a given lecture one
might answer questions on the reading, highlight a few points, and then take a de-
tailed look at some pedigogically-interesting exercises, rather than present a com-
plete discussion of the assigned reading.

Topic Coverage. _

Topic coverage is traditional, with one exception. Most texts of this type assume
only a knowledge of the calculus, and begin with a detailed treatment of ordinary
differential equations (ODEs). Here, we begin, instead, with linear algebra. Thus,
prerequisites for this book include the usual caiculus sequence, together with a
course, or at least a part of a course, on ordinary differential equations. Neverthe-
less, there is ODE material included: The needed elementary theory and solution
techniques are reviewed, for convenient reference, in Appendix A, matrix methods
are employed for systems of coupled equations in Chapter 4, the Fourier and Laplace



transforms are used to solve ODEs in Chapters 11 and 12, and series solutions of the
Bessel and Legendre equations are studied in Chapter 17.

Some important topics have rot been included: qualitative (phase plane and exis-
tence/uniqueness) and quantitative (numerical integration) discussions of nonlinear
ODEs, linear programming, nondeterministic methods, variational methods and op-
timization, fast Fourier transform, numerical integration, and the finite-element
method. A number of these topics could be grouped under the heading “numerical
methods.” Numerical methods were not omitted due to any tack of importance. On
the contrary, it was felt that they are now so extensive and pervasive that they de-
mand more attention than could be accommodated in the present text. It is true that
we do include sections. in Part IV, on the finite-difference solution of partial differ-
ential equations (PDEs), but we do so for the following reasons. First, that discus-
sion provides an important and convincing application of matrix theory, which was
the subject of Part I. Second, there is a “hands-on” flavor to the numerical solution
methods which nicely complements the more theoretical locking methods of separa-
tion of variables and integral transforms. Finally, the finite-difference methods
discussed are at least a modest representative of the larger domain of numerical
methods.

Organization.

Since there are more than 20 chapters, the book is organized into five parts in order
to provide a logical framework. These parts are as follows:

Part I: Linear Algebra

Part 1I:  Multivariable Calcuius and Field Theory
Part I1I:  Fourier Series; Fourier and Laplace Transforms
Part 1V: Partial Differential Equations

Part V: Complex Variable Theory

Roughly speaking, Parts I, II, IlI, and V are rather independent, whereas Part IV
draws heavily on Parts II and III and, in the finite-difference sections, also on Part I.

A number of sections are listed as OPTIONAL. The point here is not that these
sections should be omitted, but rather that they can be omitted in a shorter course.
For example, whereas non-Cartesian coordinates are of great importance in engi-
neering and science, it is possible that in a briefer discussion of field theory an in-
structor might wish to limit discussion to the Cartesian<case. Thus piane polar,
cylindrical, and spherical polar coordinates are split off as optional “parallel” sec-
tions in both Parts II and IV. Further, Chapter 9 can be studied without having first
studied the optional sections in Chapter 8 on surfaces and volumes. As one more ex-
ample, Sections 3.7 (Change of Basis) and 3.8 (Vector Transformation) are listed as
optional simply because they are not drawn on subsequently in Part I.

In my own course, a junior-level course for mechanical and electrical engineers,
which follows three semesters of calculus and one semester of differential equations,
the twenty-five 1-hour-and-20-minute classes (excluding examinations) are allotted
as follows:

Linear Algebra: 6 classes, covering Sections 1.1 to 4.3, with Sections 2.6,
3.7, and 3.8 omitted )

Field Theory: 9 classes, covering Sections 7.1 to 7.6, 8.2, and
Chapter 9

Preface



Fourier Series and PDEs: 10 classes, covering Sections 10.1 to 10.3, 13.1 to 13.3,
14.1, 14.2, 14.5, 15.1 to 15.3, 15.5, 16.1, and 16.2

Finally, it should be mentioned that special functions—such as the delta,
gamma, Bessel, and Legendre functions—are introduced when needed, rather than

in a separate chapter.

Exercises.

Exercises listed at the end of a section cover material presented in that section.
These exercises serve a number of purposes. First, it is occasionally stated in the text
that “‘it can be shown,” with the details left to the exercises. Second, there are nu-
merous “drill”-type exercises. These are complemented by exercises which are more
thcught provoking and/or deal with applications. Finally, in most sections there is
important supplementary information introduced in the exercises. The idea here was
to keep the text part relatively lean and to include supplementary material as part of
the exercises. This material is also intended to increase the value of the text in terms
of subsequent reference. To illustrate, consider Sections 17.2 and 17.3, on Bessel
and Legendre functions. For a text of this type, the Bessel function discussion is a bit
long (as is felt to be justified not only because of the importance cf Bessel functions
but also because consideration of the Bessel equation is somewhat representative of
other special functions as well). Thus it is important to have the follow-up section on
Legendre functions be especially crisp and to the point. To accomplish that goal,
considerable information about Legendre functions is relegated to the exercises, in-
cluding Rodriques’ formula, the generating function, integral representation, Legen-
dre functions of the second kind, associated Legendre functions, and applications to
electrostatics.

As mentioned above, if is recommended that the instructor consider the option
of lecturing on text material rather selectively, and balancing that against self-study.
In that event, it is hoped that the exercises may be used as a source of interesting
- material for lecture and class discussion.

Finally, answers are given at the end of the book for exercises indicated by as-
terisks. In addition, a Solutions Manual is available to instructors, and can be ob-
tained either through the Prentice-Hall sales representative or by contacting the Col-
lege Book Division, Prentice-Hall, Englewood Cliffs, NJ 07632.

References.

References to other books appear in three different ways. First, there are one or two
suggested references for each of the five parts, as follows:

PART I: HOWARD ANTON, Elemehtary Linear Algebra, 2nd ed. New York: Wiley,
1977.
BEN NOBLE, Applications of Undergraduate Mathematics in Engineering.
New York: Macmillan, 1967.

PART II: J. E. MARSDEN AND A. J. TROMBA, Vector Calculus, San Francisco: W.
H. Freeman, 1976.
H. M. ScHEY, Div, Grad, Curl, and All That. New York: W. W. Norton,
1973.

PART Ili:  W. E. BoYCE AND R. C. DIPRIMA, Elementary Differential Equations and
Boundary Value Problems, 3rd ed. New York: Wiley, 1977.
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R. V. CHURCHILL AND J. W. BROWN, Fourier Series and Boundary Value
Problems, 3rd ed. New York: McGraw-Hill, 1978.

PART {V: R.V.CHURCHILL AND J. W. BROWN, Fourier Series and Boundary Value
Problems, 3rd ed. New York: McGraw-Hill, 1978.
Davip L. PoweRs, Boundaiy Value Froblems, 2ud ed. New York: Aca-
* demic Press, 1977.

PART V: E. B. SAFF AND A. D. SNIDER, Fundamentals of Complex Analysis,
Englewood Cliffs, NJ: Prentice-Hall, 1976.

References to these texts are capitalized: for instance, ANTON, and SAFF AND
SNIDER. The instructor may wish to place these suggested references on library re-
serve for the class. 1 generally also include Morris Kline’s Mathematical Thought
From Ancient to Modern Times (New York, Oxford University Press: 1972) among
the reserve reading as an excellent historical source. Second, rather specific refer-
ences are footnoted. Finally, additional general references are listed at the end of
each part.
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