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PREFACE

In view of the number of texts published in the area of eleciromaguetic
fields for undergraduate students in recent years, another book in this
area mneeds some explanation. Generally, we find that the available
books suffer from one or more of the following deficiencies:

1. Inadequate coverage of topics
a. Very little or no material beyond Maxwell’s equations
b. Omission of important derivations

. ¢. Lack of depth in treatment o ;

2. Lack of separation or distinction between purely mathematical and
physical concepts

3. Ad hoc treatment of the subject of fields in the presence of material
bodies

4. Insufficient number of examples worked out

5. A lack of problems designed to give the student ability and confidence
in developing analytical solutions and extensions to the theory in
eontrast with routine drill problems

The current text represents the authors’ efforts to overcome these
shortcomings. We have endeavored to produce a book in electromag-
netic theory suitable for undergraduate use that is sophisticated enough
to establish a firm basis for advanced study in this area. Furthermore,
a sufficient number of applications treated in adequate depth are ineluded
to illustrate the basic concepts and also provide a nontrivial background
in a diverse number of areas of current interest.

We feel that an adequate text should be sufficiently complete and
have enocugh scope to warrant a place on a personal bookshelf of the
undergradusate student after he leaves school. In many cases it is
desirable to avoid presentation of a lengthy derivation of certain formulas
in class. On the other hand, many students wish to know how a given
result is obtained, and in this case an outline of the steps to be followed

. suffices, provided a detailed derivation is included in the text. We have
therefore included some material in the text of a more advanced and

sophisticated nature for the advanced or curious student and as a supple-
vii
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ment to the main course. The chapters have been organized so that
this material is reserved to the last sections. These are set in smaller
type and may be omitted by the instructor without detriment to the
main continuity of the text.

The first nine chapters of the book constitute the basic principles of
electromagnetic theory and are more than ample for a junior- or senior-
level course of one-semester duration. The level can be varied some-
what by inclusion or elimination of certain of the topics. The organiza-
tion of these chapters is fairly standard and includes vector analysis,
electrostatics, mathematical techniques in the solution of Laplace’s
equation, current fields, magnetostatics, and time-varying fields (Max-
well’s equations), in that order. The material on vector analysis gives
greater emphasis to the relationship between fields and their sources.
The climax of this development is in the presentation of the Helmholtz
theorem. The flux concept is introduced in the same chapter so that
the student will understand its general usefulness in representing any
type of vector field. Vector-analysis techniques are freely utilized in
the main body of the text. ‘ :

The theory of electrostatics is developed in Chapter 2 for free-space
conditions. In this way the electric field and its relationship to charge
sources are developed as a basic formulation. The atomic properties of
dielectrics are considered in some detail in Chapter 3. The effect of the
presence of dielectrics in an electric field is next explained in terms of the
induced dipole sources, from which the equivalent charge source is then
determined. This procedure is also followed in Chapters 6 and 7, where
the subject of magnetostatics is first developed for currents under free-
space conditions. The effect of magnetic materials is then introduced in
terms of the induced current sources. '

Chapter 4 discusses the method of separation of variables and con-
formal-mapping techniques for obtaining solutions to Laplace’s equation
with specified boundary conditions. This chapter includes a discussion
of cylindrical and spherical functions and sufficient elementary material
on functions of a complex variable to be essentially self-contained. Since
this chapter presents no new physical concepts, it may be omitted
without detriment to the continuity of the text. Simple solutions to
Laplace’s equation, including image theory, are included in Chapter 3.
The uniqueness theorem is developed in Chapter 2.

Chapter 5 discusses currents and Ohm’s law. It presents a formal
solution to the computation of the resistance of an arbitrary conducting
body. The graphical techniques of flux plotting and the use of the
electrolytic tank as auxiliary techniques for solution of Laplace’s equation
are included here.

Energy storage in electric and magnetic fields is discussed in Chapters 3
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and 8, respectively. The calculation of the electric or magnetic force
by the principle of virtual work is developed. Finally, the Maxwell
stress tenmsor is introduced, and its significance for the field concept
discussed.

In Chapter 9 the displacement current is postulated and Maxwell's
equations are formulated. The development of vector and scalar poten-
tials, their relationship to the sources, and retardation effects are then
discussed. The chapter concludes with a fairly compléte description
of the relationship between circuit theory and field theory.

Many fields books written for the undergraduate terminate after intro-
ducing Maxwell’s equations. Since Maxwell’s equations form a climax
and the bulk of the practical applications involve time-varying fields, it
can hardly be considered a wise choice to terminate the book just when
the door to a large variety of interesting and important applications has
been opened. We feel that the student can proceed to the application .
of Maxwell’s equations most expediently when he does not have to change
texts, since this eliminates the necessity of getting acquainted with
another author’s notation and way of doing things. For this reason we
have .included three rather complete chapters on applications. These
are on wave guldmg, radiation, and interaction of fields with charged
particles.

The material on wave guiding is included in Chapter 10. This chapter
also discusses plane waves, refraction at a plane interface, and cavity
resonators. The technique for accounting for losses at good conductors
is considered so that attenuation in waveguides and Q of cavities may be
computed. The chapter includes a general treatment of the resolution
of fields into TEM, TM, and TE modes. The rectangular and circular
waveguides are considered.

The subject of radiation is considered in Chapter 11. The simple
linear antenna is described, and the fundamental properties of arrays
developed. A full description of the receiving antenna and reciprocity
is also included. '

The final chapter discusses the interaction of fields with charged
particles. This includes the subject of electron ballistics and parallel-
plane vacuum-tube theory, including the effect of space charge and transit
time. Space-charge-wave theory is developed and applied to the
klystron and the traveling-wave tube. In the latter case the helix
as a slow-wave structure is described. Propagation in gyrotropic media
is considered, with specific application to the ionosphere and ferrites.
Finally, an introduction to magnetohydrodynamies is given.

The greatest utility of the book is seen as a full-year course which
would substantially cover the entire text. This would provide a very
firm foundation in electromagnetic theory and also a good insight into
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a variety of applications. Chapters 9 to 12 may also be used in a one-
semester course on applications of electromagnetic fields if the students
have s sufficient background in the fundamentals. As with the full
course, this would serve as an introduction to advanced graduate study
in special topics. The level of this material may in some instances be
deemed suitable for an introductory graduate course.

Objections are at times raised as regards presenting field theory in a
layered package, that is, electrostatics, stationary currents, magneto-
statics, ete. It certainly is feasible to begin with Maxwell’s equations
and specialize to static fields and then return to time-varying fields.
This is essentially a direct-analysis point of view. By begijnning with
the experimental laws for static fields and building up and generalizing
to time-varying fields the whole approach becomes more of a synthesis
procedure. This we feel makes the subject material more acceptable
from the student’s point of view. It also permits the concept of a vector
field to be firmly developed in connection with fields that have a rela-
tively simple behavior, for example, electrostatic field vs. time-varying
electromagnetic fields.

We do not particularly feel that relativistic electrodynamics should be
introduced at the undergraduate level. The practical applications are
few in number, and usually insufficient time is available to give anything
more than a brief introduction, which probably leaves the student
confused rather than informed in the subject. We have adopted the
conventional formulation of considering E and B as the fundamental
force vectors and treat magnetization on the Amperian-current basis.
This is in contrast to the view adopted by Professor Chu of the Massa-
chusetts Institute of Technology. Although Professor Chu’s formula-
tion has certain features to recommend it when considering the four-
vector formulation of electrodynamics, we feel it wise to adhere to the
conventional formulation. Not only does this keep our presentation
similar to that in most other reference books the student will consult;
it is also in keeping with the scope of our presentation.

Since this book is based, to a large extent, on the combined work of
many earlier contributors, it is impossible to acknowledge this on an
individual basis. We should like, however, to express our thanks to
those who assisted us during the preparation of the manuscript. We
are greatly appreciative of the help received from colleagues at Cage
Institute - of Technology and in particular from Professors Forest E.
Brammer and Robert D. Chenoweth. Many fruitful ideas were also
received from students who made use of a preliminary version of this
book. We are also grateful to Professor John R. Martin, Acting Chair-
man of the Department of Electrical Engineering, for making available
facilities for the preparation of the manuscript. And finally, we are
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indebted to Misses Florence Alaimo, Ruth Hudak, and Janet Leonard,
who expertly deciphered the original handwritten manuscript and typed
the final copy.

It may be worth noting that a toss of a coin determined the order
of the authors” names for the book.

Robert Plonsey
° Robert E. Collin
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CHAPTER 1

VECTOR ANALYSIS

This chapter develops the mathematics of vector analysis that will be
needed in the succeeding chapters of the book. Based on the work of
this chapter, it is possible to considerably simplify the formulation of the
physical laws of electromagnetic theory. Furthermore, manipulation
of the equations with the goal of solving physical problems is also greatly
facilitated. One of the purposes of this chapter is to lay the necessary
groundwork in the use of vector algebra and vector calculus.

Another purpose is also sought in this chapter. For along with the
mathematical simplifications in the use of vector analysis, there go
certain concomitant philosophical concepts. This chapter, consequently,
contains a discussion of fields, the flux representation of vector fields, and
some general remarks concerning sources of fields. The definition of the
divergence and curl of a field can then be understood as measures of the
strength of the sources and vortices of a field. When in the succeeding
chapters the specific nature of the electric and magnetic fields is con-
sidered, the student will have an appropriate framework into which to fit
them.

Although much effort has been directed to the development of a phys-
ical bagis for the mathematical definitions of this chapter, they may still
seem somewhat artificial: The full justification of their utility, and a
deepening of their meaning, will become apparent when the physical laws
of electromagnetics are considered in the later chapters.

1.1. Scalars and Vectors

In this book we deal with physical quantities that ean be measured.
The measurement tells how many times a given unit is contained in the
quantity measured. The simplest physical quantities are those that are
completely specified by & singe numlber, along with a known unit. Suck
quantities are called scalars. Volume, density, and mass are examples
of scalars.

Another group of physical quantities are called vectors. We may see
how the vector arises if we consider as an example a linear displacement
of a point from a given initial position. It is true that the final position

1
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of the point could be described in terms of three scalars, e.g., the cartesian
coordinates of the final point with respect to axes chosen through the
initial point. But this obscures the fact that the concept of displacement
is a single idea and does not depend on a coordinate system. Consge-
quently, we introduce displacements as quantities of a new type and
establish a system of rules for their use. All physical quantities which
can be represented by such displacements and which obey their respective
rules are ca.ed vectors.

The vector can be represented graphically by a straight line drawn in
the direction of the vector, the sense being indicated by an arrowhead and
its length made proportional to the magnitude of the vector. Fxamples
of vector quantities include displacement, acceleration, and foree. In
this book all vector quantities are designated by boldface type, while
their magnitudes only are indicated through the use of italics.

1.2. Addition and Subtraction of Vectors

From the definition of & vector, just given, it is possible to deduce the
rule for addition of vectors. Thus, consider two vectors A and B as
illustrated in Fig. 1.1. Vector A represents the displacement of a mov-
able point from point 1 to point 2. Veector B
represents a displacement from point 2 to point
3. The result is equivalent to a total displace-
ment of a point from 1 to 3. This linear dis-
placement from 1 to 3 is called the resultant,
or geometric -sum of the two displacements
(1,2) and (2,3). It is represented by the vee-
tor C, which we call the sum of the vectors A
and B :

C-A+B @y

_ Note that vectors A and B are of the same
dimensions and type and that the geometric construction of Fig. 1.1
requires that the origin of one be placed at the head of the other. We
may inguire whether the order of addition is of significance.

Consider that the displacement B is made first and then the dxspla.ce—
ment A. In this case the movable point describes the path 143 as in
Fig. 1.2 and consequently produces the same resultant. Vector addition
thus obeys the commutative law; i.e., the geometric sum of two vectors is
independent of the order of addltlon so that

A4+-B=B+A (1.2)

Fia. 1.1. Vector addition.

The path 143 and 123 together make up a parallelogram whose diagonal
is the resultant of the displacement represented by the two adjacent sides.
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Accordingly, the law of vector addition is often referred to as the parallelo-
gram law. This law of addition is characteristic of the quantities called
vectors. Thus it is proved in statics that forces acting on .a rigid body
follow the parallelogram law of addition; consequently, such forces are
vectors. . »

It is easy to show that vectors satisfy the associative law of addition,
which states that the order of adding any number of vectors is immaterial.
Thus the sum of three vectors A, B, C can be expressed as

A+B)+C=A+B+C) - (13

The proof can be established by considering Fig. 1.3, in which the same
resultant (1,4) is arrived at by carrying out the summation indicated by

4
A 3
4
B
B
2 .
1 i A ' 1 A »

Fia. 1.2. llustration of parallelogram of Frc. 1.3. Illustration of associative law of
vector addmon vector addition. .

enther the left- or right-hand side of Eq. (1.3). A The former pai;h' is
(1,3,4); the latter is (1,2,4). :
To obtain the difference of two vectors A — B, it becomes necessary to
define the negative of a vector. This is taken to mean a vector of the
same magnitude but of opposite direction to the original vector. Thus

A—B=A4+4 (~B) | )

- We may therefore define vector subtraction as follows: A vector B is sub-
tracted from a vector A by adding to A a vector of the same magnitude as
B but in the opposite direction. In the parallelogram of Fig. 1.2 a
dlagonal from 4 to 2 would represent the geometric difference A — B.

1.3. Unit Vectors and Vector Components

The result of multiplying a vector A by a positive scalar m is to produce
a new vector in the same direction as A but whose magnitude is that of
A times m. The resultant P is thus related to A and m by the following:

, P = mA . (1.5)
[Pl =mlA] or P=md (1.6)

A unit vector is one whose magnitude is unity. It is often convenient
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to express a vector as the product of its magnitude and a unit veetor
having the same direction. Thus if a is a unit vector having the direction
of A, then A = Aa. The result expressed by (1.5) follows immediatel’y,
since mA = mAa. The three unit vectors a,; a,, a, parallel to the right-
hand rectangular axes z, y, 2, respectively, are of particular importance,
The components of a vector are any vectors whose sum is the given
vector. We shall often find it convenient to choose as components the
three rectangular components of cartesian coordinstes. Thus, if 4., 4,,
4, are the magnitude of the projections of vector A on the z, Y, z axes, its
rectangular components are a,4., a,4,, a,4,. The vector A is com-
pletely determined by its components since the magnitude is given by

A2 = Az’ + Ay2 + A'z (1-7)
and the direction cosines I, m, % are given by .
' A, _ A, _ A,

For brevity, we shall usually designate 4,, A,, A,, without the associated
unit vectors, as the components of A. o S

Equal vectors have the same magnitude and direction ; consequently,
their respective rectangular components are equal. . Therefore a vector
equation can always be reduced, in general, to three scalar equations.
For ezample, A + B = C can be expressed as

a;(4, + B,) + a,(4, + B,) + a,(4, + B,) = ;:cs + a,C, + a,C, (L.9)

ie., addition is commutative and associative. Since the vector repre-
sented by the left-hand side of (1.9) equals that of the right-hand side, we
are led to the result

A:+B.=C. A,+B,=C, A +B.=C (.10

1.4. Vector Representation of Surfaces

Figure 1.4 illustrates a plane surface of erbitrary shape. We may
represent this surface by a vector S whose length
corresponds to the magnitude of the surface area
and whose direction is specified by the normal to
the surface. 'To avoid ambiguity, however, some
convention must be adopted which establishes the
positive sense of the normal.

When the surface forms part of a closed surface,
" Fro. 1.4, Vector sur. the positive normal is usually taken.a_s directed out-
‘face area. n is a Ward. For an open surface the positive normal,can
unit surface normal. be associated with the positive sense of describing the

S
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periphery. This relationship is defined by taking the positive normal in
the direction that a right-hand screw would advance when turned so as to
describe the positive periphery. This definition actually arises out of a
mathematical description of certain physical phenomena which will be
discussed in later chapters. One can choose either positive periphery or
positive normal arbitrarily.

If the surface is not plane, it is subdivided into elements which are
sufficiently small so that they may be considered plane. The vector
representing the surface is then found by vector addition of these com-
ponents. This means that an infinite number of surfaces correspond to a
given surface vector. The unit surface normal is designated by n. '

1.6. The Vector Product of Two Vectors

Certain rules have been set up governing multiplication of vectors.
The vector or cross product A X B of two vectors A and B is, by definition,

Fre. 1.5. Vector cross product. F1a. 1.6. Illustration for the distributive
law of vector multiplication.

a vector of magnitude A B sin 6 in the direction of the normal to the plane
determined by A and B. Its sense is that of advance of a right-hand
screw rotated from the first vector to the second through the angle @
between them, as in Fig. 1.5. Since the direction reverses if the order of
multiplication is interchanged, the commutative law of multiplication
does not hold. Actually, we have

AXB=-BXA (1.11)

This definition of vector product was chosen because it corresponds to a
class of physically related quantities. Geometrically, the magnitude
|A X Bj is the area of a parallelogram formed by A and B as the sides.
If we think of the periphery of the pa.rallelogram as described from the
origin to head of A followed by the origin to head of B, then, in accordance
with the definitions in the last section, A X B represents the vector area
of the parallelogram.

The preceding geometric interpretation is the basis for a proof that
vector multiplication follows the distributive law. Thus, consider the
prism described in Fig. 1.6, whose sides are A, B, A + B, and C. Since
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the total surface is closed, the vector representing the total surface of the
prism is zero (see Prob. 1.6). Consequently, taking the positive normal
as directed outward, the sum of the component surface areas may be set
equal to zero, giving

14(A X B) + (B X A) +AXC+BXC+CXA+B) =0 (112)
from which we obtain ‘
CXA+B) =CXA+CXB (1.13)

Equation (1.13) expresses the distributive law of multiplication.
The vector product of two vectors can be expressed in terms of the
rectangular components of each vector. Since the dutrxbutlve law holds,

AXB = (a.4. + a,4, + a.4,) X (a.B. + 2,8, + 2,B.)
a. X a.4.B. + a, X a,4.B, + a, X a,A.B,
+a, Xa,4,B, + a, X a,A,B, + a, X a,4,B,
+a, X a,A.B, + a, X a,A,B, + a, X a,A.B; (1.14)

The sine of the angle between two vectors is-zero when they are in the
same or opposite directions and is + 1 when they are orthogonal. It is
thus easy to verify that
azxay"_'a, ayxa;=a;|: a;xa:=ay
azxa==a,,xa,,=asxa,=0 ' (115)
so that (1.14) simplifies to |

AXB = a,(4,B, — A,B,) + a,(A,B. — A.B) + a.(A.B, — A,B.)
(1.18)

A convenient way of remembering the formula given by (1.16) is to note
that ‘it is obtained from the formal expansion of the following determinant:

a, ay a,
AXB=|4. 4, A (1.17)
B. B, B, ‘

Once one term of the expansion is found, the remaining can be obtained
by eyelical permutation; that is, replace zbyy,ybyz andzbyz. Far
example, the first term in (1.17) is a.(4,B, — A.B,), from which the
second term is found to be a,(4.B, — AsB.) by replacing z, y, z by
Y, 2, T, respectively.

1.6. The Scalar Product of Two Vectors

As mentioned, vector multiplication is useful in mathematically
deseribing the relationship between vectors that arise out of a class of
physical problems. In handling another class of physically related quan-
tities, it will be desirable to define a scalar product of two vectors.



