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Preface

The Internet, because of its size, decentralized nature, and loosely controlled
architecture, provides a hotbed of challenges that are amenable to mathemati-
cal analysis and algorithmic techniques. The primary goal of the 3rd Workshop
on Combinatorial and Algorithmic Aspects of Networking (CAAN 2006) was to
bring together mathematicians, theoretical computer scientists and network spe-
cialists in this fast-growing area that is an intriguing intersection of computer
science, graph theory, game theory, and networks. CAAN 2006 took place on
July 2, 2006 in Chester, UK, co-located with the 13th Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO 2006). The two
previous CAAN workshops were held during August 6-7, 2004 at the Banff Inter-
national Research Station, Alberta, Canada and on August 14, 2005 in Waterloo,
Ontario, Canada.

In response to the call for papers we received 22 submissions. Each submission
was reviewed by four referees. Based on the reviews, the Program Committee
selected ten papers for presentation at the workshop. The workshop program also
featured an invited talk by David Peleg. This volume contains the contributed
papers and an abstract of the invited talk.

We would like to thank the Organzing Committee of STROCCO 2006, in par-
ticular Christoph Ambiihl, Catherine Atherton, Leszek Gasieniec and Prudence
Wong, for all the organizational help that made it easy for us to arrange CAAN
together with SIROCCO. Furthermore, we are grateful to Andrei Voronkov for
providing the EasyChair conference system, which we used to manage the elec-
tronic submissions, the review process, and the electronic program committee
meeting. It simplified our task significantly. Finally, we thank the invited speaker,
the authors of the contributed papers, and all participants of CAAN 2006 for
helping to make the workshop a success.

August 2006 Thomas Erlebach
Program Chair
CAAN 2006
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Recent Advances on Approximation Algorithms
for Minimum Energy Range Assignment
Problems in Ad-Hoc Wireless Networks

David Peleg*

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel
david.peleg@weizmann.ac.il

Ad-hoc wireless networks have no wired infrastructure. Instead, they consist of
a collection of radio stations S = {1,2,...,n} deployed in a given region and
connected by wireless links. Each station is assigned a transmission range, and a
station ¢ can correctly receive the transmission of another station s if and only if
t is within the range of s. The overall range assignment, r : S — R™, determines
a (directed) transmission graph G,. The transmission range of a station depends
on the energy invested by the station. In particular, the power Py required by
a station s to correctly transmit data to another station ¢ must satisfy the
inequality Ps > dist(s,t)®, where dist(s,t) is the Euclidean distance between
s and t and a > 1 is the distance-power gradient. The value of a may vary from
1 to more than 6 depending on the environment conditions at the location of
the network (see [16]).

In order to allow an ad-hoc network to carry out certain basic communication
paradigms, a fundamental design problem that needs to be solved is to calculate
a transmission range assignment r such that (a) the corresponding transmission
graph G, satisfies a given connectivity property IT, and (b) the overall energy
required to deploy the range assignment r is minimized. For any desired graph
property II, the resulting problem is denoted MIN-RANGE(/T).

We focus on two basic types of communication paradigms.

— Broadcast is a task initiated by a source station which has to disseminate a
message to all stations in the wireless network. This task constitutes one of
the main activities in real life multi-hop wireless networks [10].

— Routing is a task initiated by a source station which transmits a message
intended to one particular destination station in the network.

To facilitate these two paradigms, the underlying transmission graph G, is re-
quired to satisfy one of the following two properties, respectively.

B: Given a set of stations and a specific source station s, G, has to contain a
directed spanning tree rooted at s.
SC': Given a set of stations, G, has to be strongly connected, i.e., contain a
directed path from every station to every other station.

* Supported in part by a grant from the Israel Ministry of Science and Technology.

T. Erlebach (Ed.): CAAN 2006, LNCS 4235, pp. 1-4, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 D. Peleg

This characterization of the properties does not restrict the number of hops the
communication might require. For quality of service purposes, it may be desirable
to impose a bound h on the maximum number of hops in any communication
path. This yields the following two variants.

BJh]: Given a set of stations and a specific source station s, G, has to contain
a directed spanning tree of depth at most h rooted at s.
SC1h]: Given a set of stations, G, has to contain a directed path of at most h
hops from every station to every other station.

We now review some known results on these problems. For broadcast, observe
that if @ = 1, then the MIN-RANGE(B) problem is solvable in polynomial time.
Moreover, in the 1-dimensional case (i.e., when the stations are placed on a line),
the problem is solvable in polynomial time for any o > 1 [6]. Ford > 2 and @ > 1,
however, MIN-RANGE(B) is NP-hard [5]. In [2,5] it is shown that whenever
a > d, the algorithm proposed in [10] based on constructing a minimum weight
spanning tree achieves constant approximation. It is not known whether the
problem admits a polynomial time approximation scheme.

Efficient solutions were given for MIN-RANGE(B[h]) when h is constant. In
particular, a polynomial-time algorithm for MIN-RANGE(B[h]) for h = 2, based
on a nontrivial dynamic program, is given in [1]. Moreover, the problem is given
a polynomial-time approximation scheme for any fixed constant h > 1. For € > 0,
the scheme has time complexity O(n#) where pu = O((a2%h® /e)2").

For arbitrary h, an O(hn*)-time exact algorithm for MIN-RANGE(B/[h]) on trees
is presented in [18]. In addition they present a probabilistic O(log n loglogn) ap-
proximation algorithm for MIN-RANGE(BJ[h]) on a general metric space. These
results are improved to a ratio of O(logn) in [3,12] independently. The existence
of a polynomial time approximation scheme (or even a polynomial time constant
ratio approximation algorithm) for arbitrary A is not known.

Turning to the strong connectivity property SC, we first remark that in the
one-dimensional case, i.e., when the stations are located on the real line, the
problem is polynomial. An O(n*)-time algorithm for this problem is described
in [13]. When the stations are spread in d-dimensional space (d > 1), finding
an optimal solution for MIN-RANGE(SC') is NP-hard [9,13], and moreover, it is
APX-hard for d > 3 [13]. On the positive side, the problem has a 2-approximation
algorithm based on constructing a minimum spanning tree [13].

Finally, consider the bounded-hop strong connectivity requirement SC[h]. It
is known that MIN-RANGE(SC/[h]) is NP-hard on general metric spaces for con-
stant h [12]. For the 1-dimensional case where the stations of S are spread on
the line, an O(hn?)-time 2-approximation algorithm for & = 2 and any h > 0
is described in [7]. In higher dimensions, lower and upper bounds are shown
in [8] on the optimal cost for any 2-dimensional instances with distance power
gradient & > 1, where h is an arbitrary constant. It is also shown therein that
when S is a family of well-spread instances (namely, the locations in S are suit-
ably distributed), the MIN-RANGE(SC/[h]) problem on S admits a polynomial
time approximation algorithm with constant ratio, i.e., MIN-RANGE(SC[h]) is
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in APX. Additionally, it is shown that the MIN-RANGE(SC|h|) problem with a
uniform instance probability is in the class Av-APX.

For arbitrary h, a polynomial time approximation algorithm of ratio O(n?) for
MIN-RANGE(SCIh]) on trees and a randomized polynomial time approximation
algorithm of ratio O(n? logn loglogn) for the problem on general metric spaces
were presented in [18]. This was improved in [3] to an approximation algorithm
of ratio O(logn).

Finally, a polynomial time constant factor approximation algorithm for MIN-
RANGE(SC[h]) on general metrics is given in [12]. The approximation ratio of
the algorithm is (1/ (/2 — 1))0 (1+3%) (3"‘+1)h_2. This is done by first con-
sidering a new variant of the classical uncapacitated facility location problem
UFL [4,15,17], named the hierarchical facility location problem on metric pow-
ers, HFL,[h]. This problem involves a set F' of locations that may open a facility,
subsets Dy, Do, ..., Dp_1 of locations that may open an intermediate transmis-
sion station and a set Dj of locations of clients. Each client in Dj must be
serviced by an open transmission station in Dj_; and every open transmission
station in D; must be serviced by an open transmission station on the next lower
level, D;_,. An open transmission station on the first level, D; must be serviced
by an open facility. A cost ¢;; is associated with assigning a station j on level
l > 1 to a station 7 on level I — 1. Also, for ¢ € F, a cost f; is associated with
opening a facility at location 4. It is required to find a feasible assignment that
minimizes the total cost.

A polynomial time constant ratio approximation algorithm is then established
for the HFL,[h] problem, by solving a linear relaxation of the corresponding
integer linear program and then using the filtering and rounding technique of
[14,17]. Finally, the MIN-RANGE(SCh]) problem is reduced to HFL,[h], so that
the constant approximation algorithm for HFL,[h] yields also an approximate
solution for MIN-RANGE(SC/[h]).

References

1. C. Ambiihl, A.E.F. Clementi, M. Di Ianni, N. Lev-Tov, A. Monti, D. Peleg, G. Rossi
and R. Silvestri. Efficient Algorithms for Low-Energy Bounded-Hop Broadcast in
Ad-Hoc Wireless Networks. In Proc. 21st Symp. on Theoretical aspects of Computer
Science, pages 418-427, 2004.

2. G. Calinescu, X.Y. Li, O. Frieder, and P.J. Wan. Minimum-Energy Broadcast
Routing in Static Ad Hoc Wireless Networks. In Proc. 20th INFOCOM, pages
1162-1171, 2001.

3. J. Chlebikova, D. Ye and H. Zhang. Assign Ranges in General Ad-Hoc Networks.
In Proc. 1st Conf. on Algorithmic Applications in Management, Xian, China, pages
411-421, 2005.

4. F.A. Chudak. Improved approximation algorithm for uncapacitated facility lo-
cation problem. In Proc. 6th Conf. on Integer Programming and Combinatorial
Optimization, pages 180-194, 1998.

5. A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Complex-
ity of Computing Minimum Energy Consumption Broadcast Subgraphs. In Proc.
18th Symp. on Theoretical Aspects of Computer Science, pages 121-131, 2001.



4

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Peleg

A.E.F. Clementi, M. Di Ianni, and R. Silvestri. The Minimum Broadcast Range As-
signment Problem on Linear Multi-Hop Wireless Networks. Theoretical Computer
Science 299, (2003), 751-761.

A. Clementi, A. Ferreira, P. Penna, S. Perennes, and R. Silvestri. The minimum
range assignment problem on linear radio networks. In Proc. 8th European Symp.
on Algorithms, pages 143-154. 2000.

. A. Clementi, A. Ferreira, P. Penna, S. Perennes, and R. Silvestri. The power

range assignment problem in radio networks on the plane. In Proc. 17th Symp. on
Theoretical Aspects of Computer Science, pages 651-660, 2000.

. A.E.F. Clementi, P. Penna, and R. Silvestri. Hardness results for the power range

assignment problem in packet radio networks. In Proc. 2nd Workshop on Ap-
prozimation Algorithms for Combinatorial Optimization Problems, pages 197-208,
1999.

A. Ephremides, G.D. Nguyen, and J.E. Wieselthier. On the Construction of
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In Proc.
19th INFOCOM, pages 585-594, 2000.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In Proc. 35th ACM Symp. on Theory of Computing,
pages 448-455, 2003.

E. Kantor and D. Peleg. Approximate Hierarchical Facility Location and Appli-
cations to the Shallow Steiner Tree and Range Assignment Problems. Proc. 6th
Conf. on Algorithms and Complezity, pages 211-222, 2006.

L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power Consumption in
Packet Radio Networks. Theoretical Computer Science 243, (2000), 289-305.

J.H. Lin and J.S. Vitter. e—approximations with small packing constraint violation.
In Proc. 24th ACM Symp. on Theory of Computing, pages 771-782, 1992.

M. Mahdian, Y. Ye, and J. Zhang. A 1.52-approximation algorithm for the un-
capacitated facility location problem. In Proc. 5th Workshop on Approzimation
Algorithms for Combinatorial Optimization Problems, pages 229-242, 2002.

K. Pahlavan and A. Levesque. Wireless information networks. Wiley-Interscience,
1995.

B.D. Shmoys, E. Tardos, and Aardal K. Approximation algorithms for facility
location problems. In Proc. 29th ACM Symp. on Theory of Computing, pages
265-274, 1997.

D. Ye and H. Zhang. The range assignment problem in static ad-hoc networks on
metric spaces. In Proc. 11th Collog. on Structural Information and Communication
Comgplezity, pages 291-302, 2004.



The Price of Anarchy in Selfish Multicast Routing
(Extended Abstract)

Andreas Baltz*, Sandro Esquivel, Lasse Kliemann*, and Anand Srivastav

Institut fiir Informatik, CAU Kijel
Christian-Albrechts-Platz 4
24118 Kiel
{aba, sae, lki, asr}@numerik.uni-kiel.de

Abstract. We study the price of anarchy for selfish multicast routing
games in directed multigraphs with latency functions on the edges, ex-
tending the known theory for the unicast situation, and exhibiting new
phenomena not present in the unicast model. In the multicast model we
have N commodities (or player classes), where for each : = 1,...,N, a
flow from a source s; to a finite number of terminals ¢.,. .. ,tf" has to be
routed such that every terminal ¢! receives flow n; € Rxq.

One of the significant results of this paper are upper and lower bounds
on the price of anarchy for edge latencies being polynomials of degree at
most p with non-negative coefficients. We show an upper bound of (p+1)-
"Zfl in some variants of multicast routing. We also prove a lower bound
of v?, so we have upper and lower bounds that are tight up to a factor of
(p+1)v. Here, v and v* are network and strategy dependent parameters
reflecting the maximum/minimum consumption of the network. Both
are 1 in the unicast case. Our lower bound of v, where in the general
situation we have v > 1, shows an exponential increase compared to the
Roughgarden bound of O(p/Inp) for the unicast model. This exhibits
the contrast to the unicast case, where we have Roughgarden’s (2002)
result that the price of anarchy is independent of the network topology.
To our knowledge this paper is the first thorough study of the price of
anarchy in the multicast scenario. The approach may lead to further
research extending game-theoretic network analysis to models used in
applications.

1 Introduction

Multicast routing in communication networks is a natural and practically rel-
evant extension of the so far quite well studied unicast routing. Among the
applications of multicast routing are the transmission of music, movies, confer-
ences, or any other popular content, that is requested by several customers at a
time. A formal description of our multicast routing model needs many techni-
cal definitions. We keep the introduction on a more informal level and refer the
reader to Sect. 2 for all necessary details.

* Supported by Deutsche Forschungsgemeinschaft.

T. Erlebach (Ed.): CAAN 2006, LNCS 4235, pp. 5-18, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Problem Formulation. An instance of selfish multicast routing consists of a
directed multigraph G = (V, E), where the edges are also called links, a set of
N player classes, called commodities, where commodity 7 is characterized by a
source s; and terminals (or sinks) ¢},..., tf", and a (flow) demand of n; € Rxo.
The links are each equipped with a latency function l. : R>g — Rxo. For
commodity i, a set S = {Py,..., P, } where P; is an s;-t]-path, is called a
strategy. The task is to realize for every commodity %, a flow in the network
from s; to all terminals t}, ... ,tfi, satisfying the demand n; for every terminal.
We think of the demand as being under control of infinitely many players, each
controlling a negligible fraction and selfishly trying to find the fastest route for
it. This game-theoretic model is known as the Wardrop model.

In the unicast model, k; = 1 for all i, so we have a collection of single
source/single sink commodities, and every strategy S consists of one path only.
In the multicast case there are two different ways to route the flow f(S) assigned
to a strategy S for commodity i: either, we route f(S) on each path, which is
the usual notion of flows satisfying the Kirchhoff conservation law (here shortly
called conservation flow), or we allow multiple duplication of flow at certain
nodes: a link which serves several, say r, terminals in a strategy, i.e., a link con-
tained in r paths of that strategy, only needs to transmit the data once, not r
times. That is because the data can later be duplicated to serve all terminals.
In this way, the congestion on the links can be reduced. We call such a flow
duplication flow.

The cost of a flow is defined by SC(f) = > g Ls(f)f(S), where & is the set
of all strategies of all commodities, f(S) < n; is the portion of the demand that
by the decision of the selfish players has been allocated to strategy S, and ls(f)
is the strategy latency for S. We study four different definitions for /g, which all
coincide in the unicast case. Together with the two types of flows (conservation
and duplication), we thus have 8 variants of multicast. The price of anarchy
for a multicast instance 7 is p(Z) = sup; %(ff.)), where f ranges over all Nash
equilibria and f* is an optimal flow. A Nash equilibrium is a flow in which
no player (meaning: no portion of the flow, however small) has an incentive to
unilaterally deviate from his current strategy.

Previous and Related Work. By the pioneering work of Roughgarden [1] and
Roughgarden and Tardos [2] we know that p(Z) in the unicast model for latency
functions being polynomials of degree p, is bounded from above by 0(1‘%) (and

is 5;— for p = 1). As already an example of a 2-parallel links network has a price
of anarchy of 3 (for p = 1), the surprising conclusion is that it is independent of
the network topology from a worst-case point of view [1, Sec. 3.4].

Our Results. A solid foundation for the analysis of multicast routing games is
given in Sect. 2. In Sect. 2.1 we introduce a concise model, and in Sect. 2.2 we
show, using results on variational inequalities, the existence of Nash equilibria.

As a main result, we show in Sect. 3 that the price of anarchy in multicast
routing may depend heavily on the network topology and the strategies. Certain
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edges of the graph may be utilized under certain strategies more than others,
although the players on those strategies are not charged for this. On the other
hand, some strategies may depend highly on some edges but only contribute
a small amount to their utilization. See Remark 2 for a more detailed discus-
sion of this. To capture the effects of this phenomenon, which does not occur in
unicast routing, we introduce for each edge and strategy an integer called the
consumption. Moreover we introduce two new invariants for a graph G and a set
of strategies &, which we call mazimum (resp. minimum) consumption number,
v = v(G,6) resp. v* = v*(G,6). We have v = 1 = v* in unicast routing.
We show in Sect. 3.3 that in two variants of multicast for polynomial latency
functions of degree p (where we will always assume non-negative coefficients),
the price of anarchy is at most (p + 1)%+1 and in Sect. 3.2 provide a lower
bound for one of these variants of v? (with v* = 1). So, we have here a gap of
(p+ 1.

We then present (also in Sect. 3.2) a multicast instance with price of anarchy
at least vP. As in general v > 1, the v? bound is exponentially larger than the
corresponding unicast bound of 0(1‘%)- This is surprising (and disappointing
from the point of view of a company running the network). For instances using
the advantages of duplication flows in order to de-load high-latency links, the
cost of the global optimum decreases drastically, but unfortunately, due to selfish
behavior, the users grab (greedily) certain links without a look ahead and block
them out, so that the cost of the Nash equilibrium still stands high. For other
definitions of strategy latency, in Sect. 4 we are able to prove that results from
non-atomic congestion games, i.e., bounds of the form O(l_r;Lp)’ carry over.
Open Problems. A couple of interesting open problems arise from this pa-
per. For example, can the (p + 1)v factor gap between upper and lower bound
be closed? Can exponentially high prices of anarchy be reduced by taxation
schemes? It would also be interesting to consider polynomial time algorithms for
the computation of equilibria.

An ambitious task would be to study multicast for information flows with
duplication and coding facilities of the network. Such networks are the state-
of-the-art in today’s engineering designs. Our work can be considered as a first
step in this direction.

2 Basics of Multicast Routing

2.1 Model and Instances

An instance of selfish multicast routing consists of the following.
e A directed multigraph G = (V, E). The edges are also called links.

e A set of N player classes (or user classes). Sometimes, player classes are also
called commodities. Each player class is characterized by a demand n; and a
vector of vertices (s;;t},...,t:"), where s; is the source, and the t}, ..., t" are
the terminals.
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e The demand n; is supposed to be routed from s; to each of the terminals
e xs ,tfi. We think of the demand as being under control of infinitely many
players, each of them controlling a negligible amount of it. This is the well-
known Wardrop model (see, e.g., [1, Sec. 2.2]), which will become clearer when
we define flows and Nash equilibria below.

e Each link e € F in the graph is equipped with a latency function /. : R>o —
R>(. We always assume each latency function to be non-decreasing and standard
[1]- This means that it is differentiable and & — [.(£)¢ is convex.

If an amount ¢ of traffic is to be routed through the link e, each unit of flow
will take [.(§) time to traverse e. Hence we have a total latency of [.(£)¢ on that
link.

e For i € [N] = {1,...,N}, we call a set of paths S := {Py,..., P, } where
P; is a path connecting s; with ¢} for j € [k;], a strategy. Note that for unicast
routing k; = 1 for all i. The set of all strategies we wish to allow for player
class i is denoted by &;. We assume' that &; N &; = 0 for all 4,5 € [N]. Let

6= Uie[N] Si.

e An action distribution (according to [2]), simply called flow, is a map f :
& — Ry such that all the demands are met, i.e., > g.s f(S) =ni Vi€ [N].
A flow can be understood as a partition of each of the real intervals [0,n;].
Each of these intervals represents the continuum of infinitely many players of
the corresponding player class. The quantity f(S) gives, for each S € &;, the
portion of demand that by the decision of the players from that class is routed
according to that particular strategy S.

As described in the introduction, the routing of a flow in the multicast model
can be done in two different ways: we can route the demand with flows in the
usual sense (conservation flows) or with flows allowing duplication (duplication
flows).

o Let e € F and S € 6. We define the consumption of e under S as c(e, S) :=
[{P € S; e € P}|, i.e., the consumption is the number of paths in S traversing
e, or in other words, the number of terminals served via e in this strategy.

e The congestion f. of alink e with respect to a flow f is the amount of traffic that
link e has to process. The total latency of a link e hence is I (fe) fe. Each instance
defines the congestion in one of the following ways, depending on whether we
have conservation flows or duplication flows.

b= {ZSEG(e) c(e, S)f(S) conservation flows

1
ZSGG(e) f(9) duplication flows 1)

Here, G(e) denotes the set of all strategies that contain a path which in turn
contains e.

e We denote by ls(f) the so-called latency of strategy S with respect to a flow
f. In unicast ls(f) is simply the sum of the latencies in the single path of which

1 Otherwise we have to treat G as a multiset.
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the strategy S consists®. Let S = {P1,..., P, } € &. As in [1], the latency of a
path P under f is defined by

lp(f) == 3 Le(fo):

ecP

By E(S) we denote the union of the edges in all the paths in S. Note that we
consider E(S) not as a multiset, so edges do not appear multiple times even if
they lie in several paths.

We introduce the following four definitions of the latency of a strategy S.

lg-dges(f) i Z le(fe) » lgathS(f) = Z lp(f)

ecE(S) PeS

B E(f) = B B = ()

(2)

An instance of selfish multicast routing includes one of these strategy latency
functions.

The latency of a strategy ls(f) is the latency that all players experience who
choose strategy S. It can hence be thought of as a kind of equivalent to what is
known as utility or payoff function in other game-theoretic settings.

Remark 1. 1. For unicast routing, all four definitions in (2) coincide.
2. It is easy to see that [2**"S(f) = > ecr(s) c(e; S)le(fe)-

2.2 Nash Equilibria, Social Cost, Price of Anarchy

A flow f is called a Nash equilibrium (sometimes abbreviated NE), if
f(51)>0=>lsl(f)§lsz(f) V51,52 € 6; V’LE[N] . (3)

Hence, in a Nash equilibrium, only minimum-latency strategies are used, since
then no player has an incentive to choose a different strategy (provided the rest
of the players keep their current decision). If each lg is continuous (which will
be the case during all our studies), then the game admits at least one Nash
equilibrium. This follows from the characterization of Nash equilibria as the
solutions to a certain variational inequality (see Thm. 1 and the discussion after
that).
We define the social cost of a flow f as

SC(f) = D> Is(HF(S) -
Se6

The social cost captures the overall performance of the system for a given flow
f. We will always assume that our instances admit a flow f* with minimum
social cost and that SC(f*) > 0. Existence is guaranteed if all g are continuous

%> The maximum over all links in the path has also been studied [3].
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(which will be the case in our studies), because the set of flows is compact. For
an instance Z of selfish multicast routing with optimal flow f*, define the price

of anarchy by sC(f)
P = SR sC)

Nash equilibria have a very simple structure, as seen in the following propo-
sition. The proof for this is straightforward.

Proposition 1. Let f be a Nash equilibrium. Then, for every i € [N], there
exists a real number l;(f) such that ls(f) = L;(f) for all S € &;, whenever
f(S) > 0, and no strategy in S; has latency less than 1;(f).

Corollary 1. Let f be a Nash equilibrium. Then SC(f) = Zie[N] Li(f)n.

We now aim for further characterizations of Nash equilibria. Let f, f be flows.
Define SC/(f) := Y ses Us( (f)f(S). The first part of the following theorem is
well-known for the unicast case, see, e.g., [1, Lem. 3.3.7] or [4] and the references
therein. The whole theorem also holds in a more general context than multicast
routing, for it (and its proof) does not require the notion of congestion.

Theorem 1. 1. Let f be a flow. Then f is a Nash equilibrium if and only if

we have B N
SC/(f) > SC(f) for all flows f . (4)
2. Let each ls be continuous. Then the multicast game admits at least one Nash
equilibrium.

Proof. We refer the reader to the full version of this paper for the proof of 1).
For 2) note that (4) is equivalent to g Ls(f)(f(S) — f(S)) > 0 for all flows

f. This is a well-studied variational inequality. It has been shown in [5] with
deep results from the index theory of vector fields that it admits at least one
solution. O

Note that all strategy latencies from (2) are continuous, because we only consider
standard latency functions and because the congestion is a continuous mapping.
Hence, all our multicast games admit at least one Nash equilibrium.

In the rest of the paper we investigate the price of anarchy for conser
vation flows resp. duplication flows and the four strategy latencies from (2).
These are 8 cases. In Sect. 3 we show for 5 of them that the price of an-
archy depends on the network topology, while in two other cases it does not
(Sect. 4).

3 Price of Anarchy Dependent on the Network Topology

For a directed graph G and a set of strategies & we define the minimum and
mazimum consumption number as

v*(G,6) :=min min c(e,S), v(G,&):=max max c(e,S) .
SEB ecE(S) 5€6 ecE(S)



