rofessional Software
Programming
Practice

HENRY LEDGARD with JOHN TAUER

Volume 11



Professional Software

Volume 11

Programming
Practice

HENRY LEDGARD with JOHN TAUER

A
vV Addison-Wesley Publishing Company
Reading, Massachusetts ¢ Menlo Park, California ¢ Don Mills, Ontario
Wokingham, England ¢ Amsterdam e Sydney e Singapore ® Tokyo
Madrid e Bogota e Santiago ¢ San Juan



Library of Congress Cataloging-in-Publication Data

Ledgard, Henry F., 1943—
Professional software.

Contents: v. 1. Software engineering — v. 2.
Programming practice.

Includes bibliographies and indexes.

1. Computer software—Development. 2. Electronic
digital computers—Programming. 1. Title.
QA76.76.D47L43 1987 005 87-1760
ISBN 0-201-12231-6 (v. 1)

ISBN 0-201-12232-4 (v. 2)

Copyright © 1987 by Henry Ledgard. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

ABCDEFGHIJ-AL-8987



Foreword

In asking me to write a Foreword, the author has put me on the spot in a
sweet but singularly painful fashion: if a writer needs a psychiatrist (at least
afterwards, if not before), then in this position a person needs a priest.
Confess, have you read the book before writing the Foreword, or is this all a
friendly platitude, a backscratching exercise, extracted through the flattery
of invitation?

Well, here I am on fairly clear ground. I have not only read the book, but
I have heard most of its contents in one or another form. The author evolved
some, but assuredly not all, of this material and his basic approach to good
software engineering practice when he gave ‘“‘master class’ courses, under
my direction, for one of the world’s largest and most prestigious electronics
companies.

The impact of Henry Ledgard’s approach on an audience of computer
scientists and amateur programmers (the categories overlap somewhat) was
remarkable. Students came to jeer and stayed to cheer. The normal
preconception went something along the lines that: “We’ve all written
programs and we don’t need this chap to tell us how to structure software, use
an order-code, comment our documentation, name our variables, and so



vi Foreword

forth. That’s all cosmetics, subjective stuff, isn’t it? No two people will ever
agree on cosmetic issues; it’s a matter of style...”” I have seen the author
taking on a pack of graduate computer scientists with their bloodlust
registering an off-scale value, and amateur programmers erecting a gallows
in the corner for him (it fell down, naturally, when they alpha tested it on
Fred). Later, when I had made them quality-assure each other’s software—
mere programs would have been a better description—they were more
subdued.

“That Ledgard told us all about this, didn’t he?”’ they asked. ‘“ About the
trouble we’d have with old Fred’s drivel. There’s absolutely no way I could
touch that program—nor could Fred, incidentally. Why doesn’t Henry
Ledgard write a book about it—something we could really get our teeth
into...?”’

He has, and this is it. It should be dedicated to Fred (or Fredrika) the
phantom programmer, and nobody with serious pretention to a career in
software engineering (or its management) should miss reading it. That is a
true confession.

Allen Macro, Capelle aan den IJssel, Holland



Preface

Volume I of this work treats a number of process issues (e.g., the software
lifecycle and programming teams) in software engineering. This, Volume II,
treats the code itself.

Over the years, I have reviewed, read, or worked with a considerable
amount of code. The code has been written by both students and
professionals in many different languages. I have seen the impenetrable
code, the struggle to modify parts of the software, the expensive throw away,
and the serendipity.

This work is a result of this experience. It is my considered view of some
fundamental issues in programming craftsmanship.

What is Professional Practice?

Software development is certainly a matter of design—that is, the choice of
appropriate algorithms, data structures, and general organization. But the
quality of software is not only a technical matter. If one has a proven
algorithm or a proven data structure, how can one show it in the clearest
possible manner? What is a good decomposition of the overall approach?



viii Preface

How do we write programs so that the intent is clear in the written form? The
journals are filled with papers that identify the problem of software as being
the maintenance of it.

As I mentioned in Volume I of this work, there is an identifiable
difference between a quantitative and a qualitative approach in answering
the question, what are we doing? The difference may not be as sharp as the
schools that have emerged in the social sciences, but the dichotomy in
programming certainly exists. Our discipline is, in part, certainly quantita-
tive. The concern for power, new tools, more efficient algorithms, new
language designs, support for program correctness, and the like——these are
vital. But we must also sharpen our understanding of qualitative issues, for
we can easily be shadowed in a forest of innovations.

This work addresses questions like these:

What is a good procedure?

What is a good package?

Are global variables that harmful?

Should we strive for more comments in programs?
Why is naming difficult?

The general objective is to look as deeply as we can into the quality and
craftsmanship of professional programmer’s most critical product—the code
itself.

Issues such as commenting, program layout, and naming seem like
modest, even humble, tasks. But, in practice, I submit, such humble issues
have a great impact. In any given project, these issues arise with such
frequency that, in some cases, they can obscure the focus and substance of
the very project itself. Good ideas can be buried in impenetrable code. The
unwitting programmer, who is not aware of the scope and subtlety of these
issues, may not even realize the self-created complexity of the result. And
when the product of this effort is passed on, others, too, are dragged along.

Good professional practice is both quantitative and qualitative.

Pascal, Ada, Modula-2, and C

The programming examples in this work are written in an extended variant of
Pascal. The variant includes a notation for packages and uses underscores in
variable names. This language is meant as a communication language.
Each higher-level language has its own syntax, semantics, and
constraints. Where these languages motivate special concerns, examples in



Preface ix

specific languages are given. These languages are standard Pascal, Ada,
Modula-2, and C.

This book has been typeset using a monospaced font (both bold and
nonbold) for programs. Monospaced typefaces, with or without bold, are
most appropriate for programs. They promote readability and, I believe, give
the best appearance for printing programs.

The Preface to Volume I provides acknowledgments to those who have
assisted or inspired this two-volume work.

H. L.



To The Reader

This book is my considered opinion about professional practice. Itis derived
from teaching students and professionals and from participating in numerous
software efforts. The thoughtful reader may, in places, have good reason to
hold other views. This should not confuse our common goal, the pursuit of
excellence.

xi



xvi Contents

Contents for Volume 1
Software Engineering

1. Programmers: The Amateur versus the Professional
The Amateur
The Professional

SOFTWARE ENGINEERING CONCEPTS

2. Defending the Software Lifecycle
A Miniature Lifecycle
Some Important Details
What Can Go Wrong

3. The Prototype Alternative
Prototypes
What Can Go Wrong
Revisiting the Software Lifecycle

4. Programming Teams
Teams—A Collective Goal
Teams—An Organizational Unit
Teams—Specific Tasks
The Team as One’s Major Activity
Choosing a Team
Why Teams?

5. The Personality Thicket
Some Problems
Personality
Egoless Programming
Can Programmers Get Better?

6. Work Reading and Walkthroughs

Work Reading
Team Walkthroughs



1.

10.

11.

12.

Contents

Misconceptions in Human Factors

The Primary Goal is to Help Novices

Ease of Learning Implies Ease of Use

Users Should Help Design Systems

Menus Are Easier to Use than Commands

Human Engineering Centers on a Few Key Design Issues
Users Will Be Comfortable with Subsets

Human Engineering is not Particularly a Technical Matter
Human Factors are Chiefly a Matter of Taste

Conclusion

Three Design Tactics from Human Factors
Writing the User Manual First

User Testing

A Familiar Notation for Users

On Packages and Software Decomposition
The Concept of a Package

Packages as a Design Notation

Problem Basis

Empirical Methods

A Layout Experiment

A Naming Experiment

An Experiment on the Use of Procedures

A Design Notation Experiment

Scaling up

What is Successful Software?
University Project

Contract Software

A Commercial Product
Summary

SOFTWARE ENGINEERING IN MINIATURE

A Small Demonstration

The Example: Text Formatting
User Interface Issues

A Developmental User Manual
Specification Issues

Program Design

Program Decomposition
Lessons

Appendix: The Example Program
References

About the Author

Index

xvii



Contents

Something is Wrong, Hear

PROFESSIONAL PROGRAMMING PRACTICE

One Procedure, One Purpose
Initialization

Gray Areas

A Clear-cut Example

Developing Packages
Two Examples
Ada, Modula-2, and C

. Global Variables

On Mental Abstraction

The Issues

Own Variables and Information Hiding
Pascal, Ada, Modula-2, and C
Summary

xiii

11
12
15
16

21
22
26

33
35
39
41
44
53



xiv

10.

11.

Contents

A Note on Visibility Issues
Name Protection

Nested Procedures

Nested Blocks

Comments: The Reader’s Bridge
Some Broad Principles
Annotating the Obvious

Marker Comments

Comments with Content
Comment Format

Pascal, Ada, Modula-2, and C
Summary of Recommendations

The Naming Thicket

The Goal

Accuracy

Context

Abbreviation

Magic Constants

Pascal, Ada, Modula-2, and C
Escaping the Thicket

Program Layout

Rationale

A Lurking Principle

Reflecting Everyday Presentation
Comb Structures

Layout Rules

Summary

C

Defining Types

Type Name versus Variable Name
Unnamed Types

Enumerated Types

C

Structured Programming
What Is It?

The Two Guarantees of Structured Programming

The Remaining Debate

It Worked Right Time the Third Time

A Fairy Tale

What Is a Correct Program?
Can It Be Done?

Why Attempt It?

55
55
55
60

63
65
66
69
70
73
71
79

81
83
84
85
87
91
92
95

97

99
101
103
104
109
109
111

123
123
127
130
132

135
135

137

138

141
142
144
145
147



12.

PUTTING IT TOGETHER

Conclusion

The Text-formatting Example
What’s Next

Appendix: The Annotated Program
References

Index

About the Author

Contents xv

149

151
152
155
157
213
217



1

Something
is
Wrong, Hear

When a friend of mine was nearing the end of his graduate studies, a kindly
mentor gave him advice roughly along these lines: “No matter what you do
in the future, whether you choose to be a programmer, a writer, a teacher,
take time—nay, make time—for reflection.” This work is, I suppose, a
product of many hours of reflection, wondering about the practical issues
that programmers face each day and the way they deal with them.

Programming requires that we translate the language that we speak
every day into a language that works for a computer. In so doing, we are
describing reality in a different, abstract way to solve problems. But there is a
craftsmanship in programming that is often more difficult to grasp than the
abstraction. It seems to me that terms such as clarity, simplicity, balance,
symmetry, and precision are useful synonyms for the overworked adjective
“beautiful.”

These beauties come to mind in Lincoln’s Gettysburg Address. Suppose
for some reason he had written:

Eighty-seven years ago, our antecedents created a novel nation-state in this
hemisphere, the principles being that the citizenry should live in freedom, and
that every citizen would be equal in every manner to one another.



2 Professional Software

Says the same thing, doesn’t it? But something’s wrong. Somehow the
simplicity and elegance are missing. And yet, today, no sportswriter would
dare to submit copy to an editor saying that the course record at Such-and-
Such Golf Club was broken when an unknown amateur shot “three score
and three.” There are words for the times and times for the words.

The substance of this discussion is that, in many moments of reflection
on this issue or that abstraction, on this line of code or that program, I have
come to feel that something is wrong here. A few cases are easy to spot:

An expression that carries on for four or five lines.

Two lengthy procedures that are identical except for a line or two.
A subroutine that is five times longer than it should be.

An expression that is illogical to read.

Others—in fact most—are more difficult to see.
So, before we begin the subsequent essays on programming practice,
some examples are offered. The purpose of these examples is threefold:

e To sketch the territory of issues treated in this work.
e To raise certain questions about programming practice.
e To sharpen awareness of program quality.

On each example, you might ask: Why does a programmer take a particular
route in the first place? What was the underlying logic? And why, when
someone else looks at the work, do problems of reading, interpretation, and
understanding arise?

Some of the examples that follow are short, innocuous statements—
others are longer and require some insight. That is, if you take some time for
reflection about what is being attempted in each example, you will be asking
yourself, “What is wrong here?”’ You may answer by posing other questions.

For these first three examples, let me raise questions that I have asked.
Let us examine Example 1.

e Is the procedure misnamed?

e Does it update a table?

e Does it do other things besides printing?

e Is it a procedure that has one purpose or multiple purposes?

If you can’t give a procedure a simple and clear name, there is something
wrong with its formulation; that is, it is not a one-purpose procedure. Look at
the example one more time. In name UPDATE_TABLE, we should be updating,
but we are, in fact, printing! Something’s wrong here.

Example 2 requires a little more mental concentration.



Something is Wrong, Hear 3

Example 1

procedure UPDATE_TABLE;
{ This procedure prints... }

Example 2

procedure CHECK_LINE(LINE:STRING; LINE_LENGTH: INTEGER;
STR: STRING; STR_LENGTH: INTEGER; var
FOUND: BOOLEAN; var START_POS: INTEGER);

Example 3
SET_LINE (12);

WRITE ('Enter next amount:');
READLN (INVAL)

Which parameters are input?

Which are output?

Is there a punctuation error?

For the reader, what does it look like? Is it messy, or does it have
balance and symmetry?

Well, there is some logic here. The first four parameters are input, and the
last two are output. But why does the reader have to look for them? The
programmer gave little thought to how the reader could identify the
parameters without undue effort.

Example 3 presents a prompting message given to the user on line 12,
and the value is supplied immediately after the prompt (with no intervening
space).

e What is special about line 12?

e Will the user be uncomfortable to see amount:51?
(Hint: Why not amount: 51?)

e Is INVAL a good name?
(Hint: Why not INPUT_VALUE? Or better, call it what it is: DEPOSIT or
WITHDRAWAL. If it’s a COW, why call it a BOVINE?)

The purpose of this chapter is not to answer all the questions or, for that
matter, to ask them. As you proceed through the subsequent essays, some
questions (but not all) will be raised and answered. For example, here is a
variation on the mysterious numbers of Example 3.



