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PREFACE

In this volume an approach is developed for describing the dynamic processes in las: rs
based on a spectral representation of the polarization of the material and the radiation field.
Reviews are given of results on heterojunction lasers based on an entire series of new semi-
conductor solution systems and of results on the problem of controlling the spectral compusi-
tion, directionality, and polarization of the output from heterolasers. Different materials are
studied for use as active media in high-power pulsed Raman lasers. The state of theoretica!l
and experimental work on laser ranging of the moon is discussed. It is shown that the basic
characteristics of the earth—moon system can be determined from one to three orders of
magnitude more accurately by using laser ranging measurements than by using other optical
methods.

This anthology is intended for physicists doing research on and working with lasers.
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FLUCTUATING INTENSITY REGIMES IN
LASERS AND MASERS

V. A. Dement’ev, T. N. Zubarev,
and A. N. Oraevskii

The conditions for spiking in lasers (and masers) are studied. A method is developed for
analyzing the equations describing laser processes which is a variant of the Fourier method in
combination with the small-parameter method applied to this particular problem, This method
makes it possible to consider in a unified way the statonary states of lasers, their stability, and
transition processes, The following laser models are analyzed: standing wave and traveling
wave lasers, lasers with a point active medium, with an inhomogeneous luminescence line, and
with a Q-dispersive cavity. The effect of pumping instability and the cavity parameters on the
operating regime of a laser is studied. Stochastic methods are used to study random lasing and
a laser with noise pumping, These cases have made it possible to formulate criteria for the dif-
ferent spiking regimes in various types of lasers and masers. An attempt is made to compare
some of the conclusions of this theory with available experimental data,

INTRODUCTION

Research on the dynamics of lasers and masers has been going on for more than ten
years, During this period much experimental and theoretical work has been done on fluctuating
intensity regimes (spiking) in molecular masers and various types of lasers [1-9]. It is found
experimentally that under certain conditions a spikeless lasing regime is replaced by chaotic
or regular spiking. In some cases spiking is regarded as a favorable factor while in others
it is undesirable. The spikes have different characteristics. There are the so-called free
lasing spikes (usually lasting milliseconds), the envelope of which is modulated at a low fre-
quency (of the order of a kilohertz); self Q-switching spikes (lasting nanoseconds in lasers),
which are a sequence of giant pulses with a repetition rate of the order of the effective lifetime
of the upper working level; and ultrashort pulses (lasting picoseconds in lasers) with a repeti-
tion rate equal to the transit time of a photon through the cavity. The conditions for disruption
of spikeless operation of a laser depend very subtly on a whole group of parameters. Detailed
experimental studies have been made of the effect of such factors as the mode composition of
cavities [10-12], the amount of pumping [4, 10, 13-16], and the stability of the laser parameters
[17]. Definite progress has been made in the theoretical description of laser operation. Un-
damped oscillations in the density of photons in inverted systems have been obtained in [3,
18-21, 161]. Nonetheless, up to now (1) there is no single opinion on the nature of spiking;

(2) no approach hasbeen proposedthat can uniquely yield all the experimentally observed regimes;
and (3) the theoretical models are often very far from experiment, so it is difficult to compare
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the theoretical results with experiment. In this article we summarize some of our results on
formulating a theory which satisfies these requirements.

Up to now the theory of lasers has involved three approaches [22]. The first approach
consists of work on the quantum theory of the laser [23-26] in which the active medium and the
electromagnetic field are considered from the standpoint of quantum theory. This is the micro-
scopic level of investigation and, as a result, the quantum statistics of laser radiation has come
to be understood and profound analogies have been discovered between laser instabilities and
physically well-known phase transitions and critical phenomena near a state of thermodynamic
equilibrium. The second approach combines work on the macroscopic level [22] and informa-
tion theory to describe processes in lasers. The third approach involves a semimicroscopic
treatment with a quantum-mechanical analysis of the active medium and a classical examina-
tion of the field [3, 27]. The quasiclassical equations are sufficiently general for studying the
dynamics of lasers and are the basis of this paper as well as most work on the theory of lasers.
This is why a number of problems in laser kinetics lie beyond the scope of this article. For
example, we do not discuss the operating regimes of lasers with a transverse inhomogeneity
in the field [28, 29], multicomponent media [30-32], multichannel lasing [33], the effect of the
dependence of losses and the refractive index of materials on the field strength [3, 34], the effect of
the relationship between the pumping and lasing channels [35] on the operation of lasers, and so on.

The active medium of a laser is essentially an ensemble of quantum objects with two
working levelsT which interact with one another through an electromagnetic field. In the ab-
sence of energy sinks and sources the probability of a two-level molecule situated in an elec-
tromagnetic field being in one of the levels oscillates at a frequency equal to the ratio of the
product of the moment of the transition (dipole or magnetic) times the field strength to Planck's
constant [36]. In the microwave range the working transition is usually a magnetic dipole
transition and the frequency of the oscillations in the inverted population has an obvious physi-
cal meaning: It is the nutation frequency of the magnetic moment of the molecule about the
direction of the magnetic field. In the optical range the working levels are part of an electric
dipole transition which has no simple classical analog, but this frequency is still called the
optical nutation frequency.

The operation of a laser cannot be understood without including the processes of dissipa-
tion and pumping. Dissipative pi'ocesses in the laser are described by three phenomenological
relaxation constants. The lifetime of the upper working level of the molecule, or the longitudi-
nal relaxation time of the material, determines the rate of change of the population inversion
in the material. The width of the luminescence line, which is inversely proportional to the
transverse relaxation time of the material,  defines the duration of a coherent wavetrain in
spontaneous emission of the molecule. The spectral width of a mode, which is inversely pro-
portional to the lifetime of a photon in the cavity, characterizes the rate of damping of the field
in the cavity. The effect of pumping is described by the change from the stationary value of
the inversion in the absence of a field. When, due to pumping, more energy enters the system
than is lost, the laser is self-excited. After the pump is turned on, the threshold population
inversion is established after a time of the order of the lifetime of the laser level. The spectra
of the modes in the laser output are formed after a further delay equal to the photon lifetime in
the cavity. If the product of the transit time of the photons across the cavity and the optical
nutation frequency is of the order of unity, then the electromagnetic wave strongly modulates
the absorption coefficient or refractive index of the material, the modes may be coupled in
phase (as when they are synchronized by an external force), and the laser emits ultrashort pulses.

1 In the following we shall speak of a two-level molecule for brevity.
1 The terms "longitudinal™ and "transverse" relaxationtimes of the material, as well as the term
"nutation frequency," have been taken from microwave terminology.
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The envelope of the ultrashort pulses is formed due to the development of deviations in
the partial intensities of the modes from their stationary values. These intensity deviations
undergo self-consistent relaxation (at customary pumping intensities) oscillations together with
the deviations in the inverted population and polarization of the material. Oscillations at the
relaxation frequency arise in the same way as in the predator —prey (Volterra's) problem. The
relaxation oscillations in the output intensity may be damped or may grow. Inthe latter case the
stationary envelope of the ultrashort pulses is a sequence of giant pulses which repeat at a

frequency equal to the lifetime of the laser level since the stationary regime is determined by
gross energy factors. Thus, relaxation and nutation oscillations in the inversion are potential
sources of instabilities in the spiking regime of a laser as well. In its most developed form
the spike structure of the laser output is a sequence of ultrashort pulses with an envelope made
up of giant pulses. In the opposite limiting case the laser operates without spiking. To realize
these cases a number of sufficient conditions must be satisfied which differ according to the
type of laser, and the resulting lasing regime may be a very poor copy of the picture sketched
above.

Laser instabilities depend on a whole series of factors of which the following are most
important:

(a) The ratio of the optical nutation frequency to the relaxation constants of the material
and field. I this frequency is much greater than the relaxation constants, then the inverted
population mainly undergoes nutation oscillations, while in the opposite limiting case the in-
version oscillates at the frequency of the relaxation oscillations.

(b) The relations among the relaxation constants of the material. I the linewidth is
much greater (less) than the spectral width of a mode, then the polarization (field) lags behind
the field (polarization). The lifetime of the upper working level of a laser, except in the case
of molecular and spin lasers, is much greater than the other characteristic times, and this
often makes it possible to divide spike formation into pumping and emission stages.

(c) The duty cycle of the cavity. The lasing kinetics depend to a great extent on the ratio
of the dimensions of the active medium to the wavelength. I the dimensions of the medium are
much less than the wavelength, then its dimensions can be neglected and the laser can be
treated as having a point active medium.

(d) The degree of spatial inhomogeneity in the field, which is characterized by the rela-
tions among the intensities of waves traveling in opposite directions.

(e) Spatial dispersion in the Q factor of the resonator cavity. This explains the differ-
ent lesses of modes with different indices.

(f) The nature of line broadening. The luminescence line may be homogeneously and
inhomogeneously broadened. A homogeneous line has a Lorentzian shape while an inhomogen-
eous line may be described by a Gaussian function or by discrete distributions.

We now present a classification of the instabilities and give a brief review of the contents
of this article. First of all, the instabilities may be divided into two large classes. The ap-
pearance of instabilities of the first class is determined by the energy balance in the laser or
maser, and the condition for instability may have the form of a condition for self-excitation of
the laser including saturation. This kind of instability is aperiodic or oscillatory with a fre-
quency equal to the difference between the modal frequencies of the cavity and a growth rate
of the order of the width of the mode (in lasers). An instability of this type describes the exci-
tation of the spectrum of axial modes in the kinetic theory of lasers (oscillatory instability) or
the destruction of a packet of modes (mode capture or trapping instability) in three- and single-
mode lasers (cf. Section 5, paragraph 5.2).
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Fig. 1. The dependence of the frequency
of nutation (18) and relaxation (20) oscil-
lations in the inversion on the pumping

Y3 > Yq1+ 7Yy IHysz< yy+v,the branches
(18) and (20) do not intersect. The dashed
line corresponds to a frequency A for os-
cillations in the field, inversely propor-
tional to the transittime of a photonthrough
the cavity.

As an instability of the second class develops, the inversion oscillates at the relaxation
or nutation frequency while the growth rate is determined by various factors and is of the order
of or less than the Einstein coefficient for spontaneous emission. Various models have been
studied.

A. A laser or maser with homogeneous parameters, that is, one using traveling waves
with a homogeneous luminescence line and a dispersion-free cavity completely filled with the
active medium (Sections 2-4).

1. Single-mode laser or maser (Section 3). The frequencies of the relaxation and nuta-
tion oscillations in the inversion depend in different ways on the laser parameters. It may
happen that for certain parameter values these frequencies are of comparable magnitude (cf.
Fig. 1). Then one speaks of an intersection of the relaxation and nutation branches of the oscil-
lations. The strong interaction between the different forms of oscillation which may occur
when the branches intersect is the reason for instability in the spikeless regime in masers,
semiconductor lasers, and molecular lasers if the spectral width of a mode is of the order of
or much greater than the width of the luminescence line. The mechanism of the instability is
as follows. The deviations in the inverted population and other dynamic variables from their
values in the spikeless regime primarily excite relaxation (nutation) oscillations in the inver-
sion at small (large) pumping levels in the sense of factor (a). Since the frequencies of the
relaxation and nutation oscillations are close, the primary excited oscillation is amplified by
interacting with the weakly excited oscillation. The developing instability brings the laser
into a self-Q-switched spiking regime at the optical nutation frequency at high pumping levels.
Weak and strong regimes of spike excitation are possible.

2. A multimode traveling wave laser or maser (Section 4). The instability in the spike-
less regime is a consequence of either the Cerenkov effect or an autoparametric resonance.
The Cerenkov instability occurs when the phase velocity of an electromagnetic wave is greater
than the propagation velocity of light in a medium (cf. Figs. 2 and 7). With an autoparametric
resonance, heating between modes at a frequency equal to twice the optical nutation frequency
pumps oscillations at the nutation frequency (cf. Figs. 4 and 7). Whereas with the Cerenkov
instability a laser can "weakly" go into a spiking regime at the nutation frequency, the auto-
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Fig. 2, The dependence of w, —w; on
w, —wn, for various values of pumping
with y; < vg: 1-8) w§> 2v%; 9, 10)
wj< 2y, (I) the asymptote w, —w =
a(@ —®_); (2-4-7-5) hysteresis which
occurs on tuning the cavhi'ty; (I the
straight line w —w =w -w
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parametric resonance yields only a nonlinear instability, that is, a "hard" spike excitation
regime at the nutation frequency. The growth rate is inversely proportional to the effective
photon lifetime in the cavity with a proportionaliiy coefficient of the order of the square of the
ratio of the nutation frequency to the linewidth.

B. Lasers and masers with inhomogeneous parameters (Section 5).
I. Point model (Paragraph 5.1).

1. A single-mode laser with a point active medium behaves as a single-mode traveling
wave laser.

2. A two-mode laser with a linewidth much greater than the width of a mode. Mode
capture is unstable when the difference between the mode frequencies is of the order of the
widths of the modes (cf. Fig. 8) and the stability boundary is "hazardous," that is, for smaller
differences between the mode frequencies a nonlinear instability may occur and the laser may
undergo a strong transition into a self-Q-switched spiking regime.

3. Three-mode and single-mode laser with a linewidth much greater than the spectral
width of a mode. Mode capture is stable for arbitrary differences in the mode frequencies.
Apparently only a strong transition to a self-Q-switched spiking regime with mode locking is
possible (cf. Fig. 8). '

II. Spatial inhomogeneity of the field in the cavity (Paragraph 5.2).

1. Single-mode laser. In the neighborhood of an antinode (node) of a standing wave the
field strength is greater (less) than the field strength in a traveling wave laser. Thus, field
oscillations at the relaxation frequency are damped more strongly (weakly) near an antinode
(node) of a standing wave than in a traveling wave laser. Near the lasing threshold these ef-
fects compensate one another on the average. As the pumping level is increased the standing
wave begins to burn out the inversion near the nodes by means of multiphoton processes, the
hole in the spatial distribution of the population inversion becomes larger, and the damping
rate of the spikes becomes greater than in a traveling wave laser.

2. Two-mode laser. Mode capture sets in after a time of the order of the damping
decrement of the spikes in a single-mode laser. The spectrum of the modes which are set to
oscillating due to spatial burnout of the inversion is formed with a growth rate proportional to
the spectral width of the mode, and in a two-mode laser the coefficient of proportionality is of
the order of the square of the ratio of the frequency difference between the modes to the spec-
tral width of the modes. Thus, the second process is more effective than the first when the
frequency difference between the modes is greater than the frequency of the relaxation oscilla-
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tions, and mode capture is unstable at such frequency differences (cf. Fig. 10). The stability
boundary is hazardous and the spikes at the relaxation frequency either are damped or grow.
In the latter case a self-Q-switched spiking regime results.

3. Three- and multimode laser. Mode capture is unstable for arbitrary frequency dif-
ferences between the modes because of an instability of the first class. The laser operating
regime is described by a complex integral manifold in phase space with these characteristic
time scales (in order of appearance): the transverse relaxation time of the material, the
transit time of photons across the cavity, the lifetime of photons in the cavity, and the longitu-
dinal relaxation time of the material. In this regime a laser produces mode-locked self-Q-
switched spikes. The partial intensities of the modes are established with a growth rate of the
order of the spectral width of the mode because of an instability of the first type. The envelope
(a giant pulse) is formed in a time of the order of the lifetime of the upper working level as an
instability develops at the relaxation frequency. The phases of the modes are synchronized
with a growth rate of the same form as in a multimode traveling wave laser, that is, mode
synchronization occurs due to optical nutation. It follows from obvious physical considerations
that, beginning with a sufficiently large number of synchronized modes, the development of
ultrashort pulses should take place in the same way in traveling wave and standing wave lasers;
thus, as far as the physics of the phenomenon of synchronization (locking) is concerned, we can
repeat all that was said above in Paragraph A.2. From this standpoint the effect of a bleach-
able filter in mode locking is to isolate the strongest fluctuating emission outburst of the laser
which then initiates these dynamic synchronization mechanisms.

ITI. Spatial dispersion in the Q-factor (Paragraph 5.2).

The spectrum of the laser modes is established during competition among the position
dependences of the gain and absorption coefficients. Burning a gap in the spatial distribution
of the inversion widens the lasing spectrum, and increased loss of modes as the mode fre-
quencies are shifted further away from the center of the luminescence line narrows the spec-
trum of the working modes. The first effect exceeds the second for frequency differences be-
tween the modes of the order of the square root of the difference in the squares of their widths,
and an oscillatory instability at the relaxation frequency appears. The development of the
instability brings the laser into a stationary spiking regime of the same type as in Paragraph
B.IL3. '

IV. Imhomogeneous luminescence line (Paragraph 5.3).

1. Single-mode laser. The field burns a hole of width equal to the homogeneous line
broadening in the inhomogeneous luminescence line. If the relaxation frequency for the lumi-
nescence centers involved in lasing is equal to the width of this hole, then an oscillatory lasing
. instability develops at the relaxation. Bifurcations in a spikeless lasing regime at the stability
boundary are studied for a laser with a mode width much greater than the line width. The
stability boundary may be hazardous or safe and the stationary spiking regime may consist of
spikes with a width and period of the order of the transverse and longitudinal relaxation times
of the material, respectively.

2. Multimode laser. A new feature is observed in the amplitude characteristic of a two-
mode laser in which the transverse relaxation time of the material is much less than the longi-
tudinal relaxation time while the latter is much less than the photon lifetime in the cavity. It
is known that if the frequency difference between the modes is less than the homogeneous
broadening of the line, then the partial intensities of the modes are reduced by roughly a factor
of 2 because of overlapping of the holes burned by the modes in the luminescence line (the
so-called Lamb dip). I the frequency difference between the modes is reduced further, to the
point that the product of the frequency difference and the longitudinal lifetime of the material
is of order unity, then the population inversion follows the field and oscillates with a large
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amplitude. The resulting combination frequencies lie outside the amplifying bandwidth of the
cavity and are absorbed. Because of this the partial intensities of the modes are further re-
duced by a factor of 1.5. Thus, against the background of the Lamb dip there is a narrower
dip with a width inversely proportional to the longitudinal lifetime of the material.

C. Nonautonomous systems (Section 6).

1. Single-mode laser (Paragraphs 6.1 and 6.3). A parametric instability with modulation
of the cavity losses develops when the ratio of the frequency of the external force to the relax-
ation frequency is a rational number. The amplitude —frequency characteristics of the har-
monic (i.e., at the frequency of the external influence) and subharmonic (with a frequency equal
to half the lowest modulation frequency) intensity oscillations are determined. When the loss
modulation amplitude is greater than the ratio of the damping increment of the relaxation spikes
inanautonomous single-mode laser to the spectral width of the mode, thenthe resonance becomes
nonlinear, the maximum of the amplitude —frequency characteristic is shifted toward lower fre-
quencies, and hysteresis phenomena may occur. Modulating the pumping yields these effects
at powers such that the optical nutation frequency is much less than the linewidth. In the in-
verse limit the amplitude —frequency characteristic has a resonance at the optical nutation
frequency when the pump is modulated. When the losses are modulated this effect does not
occur since at higher pumping levels the nutation frequency is the characteristic frequency of
the fluctuations in the inversion; thus, if an external force at this frequency acts on the field
(as during modulation of the losses) then, as with a roll dampener on a ship, the inverted popu-
lation oscillates with a large amplitude while the field hardly oscillates.

2. Multimode laser (Paragraph 6.2). Modulating the losses yi€lds the same type of
phenomena as in a single-mode laser. When the refractive index of the material is modulated,
we obtain a phase modulation of the output with a maximum in the partial amplitude —frequency
characteristic near frequencies of the order of the slow relaxation frequency in a multimode
laser. (This frequency is roughly equal to the relaxation frequency of a single-mode laser
divided by the square root of the number of excited modes.)

D. Stochastic effects (Section 7).’

1. Single-mode laser (Paragraphs 7.1, 7.2, and 7.3). If the external influence modulates
the laser parameters over a wide spectrum of frequencies and to such a depth that the system
can change its stationary states within a resonance and go from one resonance to another, then
the output becomes highly irregular and close to random. For pumping with white noise the
noise intensity required for randomization within a resonance is directly proportional to the
square of the ratio of the lifetime of a photon in the cavity to the effective lifetime of the upper
laser level. The stochastic instability is the most hazardous kind of instability for the opera-
tion of a laser. The analysis of the conditions for the stochastic instability relies on the kinet-
ic equations for the radiant energy density. A study of the stationary solutions of these equa-
tions shows that the laser output has an almost-periodic turbulence spectrum, i.e., a linear
spectrum, If the spectral width of a mode is much less than the linewidth, then a stationary
random regime with a continuous spectrum corresponding to developed turbulence in the laser
output is possible. The laser emits random spikes with a frequency and width of the order of
the relaxation frequency while in the case of almost-periodic turbulence the spikes are grouped
in packets whose repetition rate equals the difference between the frequencies in the spectrum.
An examination of the stability of the spikeless regime and an analysis of the transition pro-
cesses shows that the turbulence may develop strongly or weakly. I the cavity frequency
equals the frequency of the line, the spikeless regime is stable but strong excitation of a
developed stationary turbulence is possible. As the cavity frequency is displaced from the
frequency of the line,the spectrum of the stationary turbulence is depleted and the number of
stationary states is reduced. However, the role of the nonstationary motions is enhanced at
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the same time that the threshold for excitation of turbulent emissionis reduced. If the shift inthe
cavity frequency from the line frequency exceeds the product of the nutation frequency and the
square root of the maximum possible number of spectral components in the output of a laser
whose mode frequency equals the line frequency (Fig. 2), then the spikeless regime is unstable
and the resulting turbulence is nonstationary.

2. Multimode laser (Paragraphs 7.3 and 7.4). If the mode spectrum has a single charac-
teristic scale (that is, only axial modes operate),then random relaxation spikes occur in the
laser output when the product of the slow relaxation frequency and the lifetime of the upper
laser level exceeds unity. If a laser generates a group of transverse modes near the frequency
of an axial mode such that the emission is coherent within that group while the emission from
groups belonging to different axial modes is incoherent, then the laser may emit partially
ordered trains of spikes. Strong excitation of the spiking regime occurs when the slow relax-
ation frequency is of the order of the distance between the frequencies of the transverse
modes. A random self-Q-switched spiking regime appears. Because each group of transverse
modes oscillates independently, a giant pulse splits randomly into smaller pulses, whose num-
ber is proportional to the number of axial modes generated.

As we proceed to prove these statements, we note that the theory of instabilities may be
constructed deductively. As a rule, in order to explain the nature of the instabilities, a different
approach is preferred. At first the instabilities in the simplest model of a laser are analyzed.
This model is then refined as more new factors are included. The figures also serve this
purpose and most of them are qualitative.

1. Derivation and Preliminary Analysis

of the Equations

To model the processes taking place in a laser or maser we shall consider an active
medium made up of two-level molecules located in a resonator cavity. The interaction of the
electromagnetic field with the matter obeys the following system of equations [1, 2]:

v =7y, (1 —v) + 2iQe (p* — p), )
p = — (iog + y;) p— iQev, @)
¢+ 2me— Ve + 20 (+p) =0, @)

where e = (2nnyho,)» E (E is the electric field strengthf); p = pgy and v = pyy — py4, Where
p..(, j =1, 2) is the density matrix of the two-level molecule in the energy representations;
that is, the real and imaginary parts of p describe the polarization and displacement
current of the medium, respéctively, and v gives the inverted population of the me-
dium; w, is the frequency of the transition between the working levels of the mole-
cule; Q = (27rnow°/ﬁ)1/ 2D (D is the absolute value of the dipole moment of the transition
and ny is the density of inverted molecules in the absence of a field in the stationary state); vy .
is the effective lifetime of the upper working level of the molecule or the longitudinal relax-
ation time of the medium; v, is the luminescence linewidth, inversely proportional to the trans-
verse relaxation time of the medium; y;l is the photon lifetime in the cavity and is inversely
proportional to the spectral width of the mode., Table 1 shows the relaxation constants for
various types of lasers and masers,

t For a maser the electric field and transition dipole moment in Egs. (1)-(3) are replaced by
the magnetic field strength and the transition magnetic dipole respectively. To be specific,
in the following we shall speak of an electric dipole transition.
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TABLE 1
Type of laser (maser) v, sec7d| ys,sec? | 8, sec™!| v, sec’?| References
Ruby laser, 300°K 108 101 — 107—10° [2, 371
Same, 4-7T7K 10% 107—109 | 2.101° |407—10° [38]
Dysprosium laser ~ CaF,:Dy®*, 27°K | 102—105 |  40° - 108 (39, 40]
Ruby maser 102 108 —_ 108—108 [2, 41]
Semiconductor laser 100 1012 — 100—102| [42]
Molecular maser (laser) 104 104 — 108 1]
He—Ne laser 108 108—10° 101 107 [43]
Atmospheric pressure CO, laser 108 1010 1010 108 [44—46]
Dye lasers 108—109 1012 —_ 108—10° [47]

Note: ¢ is the inhomogeneous line broadening (see Section 5).

Since we are usually interested in the electric field in the cavity, it is natural to elimi-
nate the elements of the density matrix from Eqgs. (1)-(3). This may be done in a general way,
but the weak nonlinearity of the equations and the existence of dispersion make it possible to
limit ourselves to the approximation

p+p* =~ — o (p+ p* (4

upon substituting Eq. (2) into Eq. (3). After this we find the following equation for the field
from Egs. (1)-(3):

AE e= —Qz{i-i-Seéexp[—v,(!—r)]dt} e, (5)

4oy

which is an integrodifferential equation with partial derivatives and a retarding kernel
exp [~y 1t — 7)] and

7 )
A=—cV+am+2ng.
92 a
B=°’:+'a_tg+2%7,
A [0
=G +w)e

Recurrence is a feature of the autooscillatory motions in which all the dynamic charac-
teristics of the system are roughly repeated with a quasi-period depending on the time and
accuracy of the repetition [48]. The most general class of recurrent motions which have becn
studied analytically up to now are the almost-periodic oscillations for which the quasi-period
is independent of time but depends on the accuracy of the repetition. If the period is also in-
dependent of the accuracy of repetition, then we obtain a periodic oscillation which is a spec:
case of an almost-periodic oscillation. In general a periodic motion is a superposition of a
countable number of sinusoidal oscillations with frequencies that are multiples (of a single
fundamental), while an almost-periodic motion decomposes into a Fourier series with incomn: -
mensurable frequencies. The simplest example of an almost-periodic function is, therefore,
the beating of two harmonic oscillations with close frequencies. In [49] the basic properties
of periodic functions are generalized to almost-periodic functions. In particular, it is proved
that arithmetic operations, differentiation, and integration (in the last case the Fourier expan-
sion does not have to contain a free term) are defined in the class of almost-periodic functions.

o



10 V. A. DEMENT'EV, T. N. ZUBAREV, AND A. N. ORAEVSKII

These simple properties of almost-periodic functions are the basis of their extensive use in
various problems in the theory of oscillations. Thus, we seek the stationary states of a laser
as solutions of Eqs. (5) in the form of trigonometric series with real frequencies:

e = Dlepexp(— iwpl), G_p=0p, €_p=ep )
P

where the components e are expanded in a series over the eigenfunctions (modes) of the
cavity @,:

ep = Ee;(b)‘, —_ C?‘VZ(D)~ = 5?\(1),\. (8)

In general the electromagnetic field has an infinite number of degrees of freedom and
is described by partial differential equations. From a mathematical standpoint the stability of
the solutions of partial differential equations is a complicated and still mostly unsolved prob-
lem. The major techniques and assumptions of stability theory were formulated by Lyapunov
for systems with a finite number of degrees of freedom and obeying ordinary differential equa-
tions [50]. In recent years it has been shown that they can be generalized to equations with an
infinite number of degrees of freedom if the variation equations for the motions whose stability
is being studied have a bounded spectrum, that is, the solutions of the variation equations that
have the exponential form exp (yt) are such that |y| < C, where C is a constant [51]. The wave
equation (3) contains the unbounded operator ¢?V2 whose spectrum 52)\ [see Eq. (8)] extends to
infinity. Nevertheless, it is clear that an instability cannot develop on modes whose frequencies
differ from the center of the emission line of the material by much more than the width of the
line. Intensity fluctuations in such modes are damped rapidly. Because of this rapid process
the system lies in the neighborhood of an integral manifold (a manifold of the trajectories) of
finite dimensionality. Therefore, the classical methods of studying stability [50] are applicable
to the dynamics of lasers for dispersive media, that is, media with a finite linewidth, and in
analyzing the stability of the stationary states of a laser we shall seek solutions of the equations
in the form of Eqgs. (7) and (8) with complex frequencies Wy .

We shall study transition processes in lasers using the trigonometric expansions (7) with
complex frequencies w, which vary slowly in time. This variant of the averaging method is
known in the literature as the quasiclassical approximation or the WKB method [36; 52]. Thus,
the stutionary states of a laser and their stability and transitions are analyzed in a unified way
with the aid of solutions of the form (7) and (8) with real and complex, constant and slowly time-
varying frequencies w,. Expansions of this form are used to solve nonlinear problems in
dynamic and stochastic theories [53]. This method has many variants [52-54], including
Poincaré's small parameter method, the averaging method, the harmonic balance principle,
the stroboscopic¢ method, the WKB method, and so on. In the form given above it is well suited
to solving various nonlinear problems in the theory of lasers and makes it possible to explain
the instabilities as well as to study the effects of the mode composition of the cavity, the in-
homogeneity of the laser parameters, and randomness on the operation of the laser.

 We shall dprive some general, mainly qualitative results which are valid for the entire
class of stationary laser states. A stationary state of the field is characterized by a spectrum
of output (generated) frequencies w, and a spectrum of oscillating (generating) modes 5)‘. In
general these are different concepts. In fact, if the frequency difference between the modes is
less than the spectral width of a mode vy g, then such modes may be captured and form a packet
of modes which oscillate at a single frequency while different packets, generally speaking,
overlap one another. In the space andtime Fourier expansion (7) and (8) the quantity %[e; [*

characterizes the partial intensity of a line in the frequency spectrum while Dlep | gives the
P
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partial intensity of a mode in the spectrum of stationary state modes. To characterize the
spectra we introduce the moments of the distribution of partial intensities. The first moment
determines the location of the center of the spectrum and the second gives the width of the
spectrum. It appears that in a stationary laser state there is a simple relationship between

the center of the frequency spectrum & = kample; I [”}_‘,A|e; ] and the center of the mode spec-

trum ©= Y oalep[2[ D |ebP]*. To derive this relationship we substitute Eq. (7) in Eq. (5).
P, A P, A
We obtain the following equationf :

A_B. ee, e
p‘:’ep=—-Q2 ep + E TU_'"_ . 9)
40 n—ie,+o,)

0 “k+“°1+“‘m=“’p m

where Ap, Bp,andépare given by Eq. (6) with iw, substituted in place of 9/8t. We multiply
Eq. (9) by e p» Sum it over p = 0, integrate it over space, and separate the imaginary part.
The fourfold sum (over p = 0, k, I, m) in the latter equality contains every term together with
its complex conjugate because the width of the frequency spectrum of the field is much less
than @ (|0, — 0, | <) and 1, < ©®, so it goes to zero. We thus obtain the desired disper-
sion relation

© = a® + Py, T (10)

where o =y,/(yy +7vg) and B =1 — . This expression means that the average nonlinear fre-
quency pulling and pushing balance one another, and only so-called linear frequency pulling re-
mains. In particular, for a single-mode system with a cavity eigenfrequency &, Eq. (10) be-
comes the well-known formula [27, 55]

®, = a0, + Po,.

The nonlinear terms in Eq. (9) may be resolved into "diagonal™ (w; + w,, = 0) and "nondiag-
onal" (w; + w_ = 0) terms. The "nondiagonal™ terms are due to oscillations in,the population
inversion with time, and their ratio to the "diagonal™ terms is of order y,ly{ — i+ w )| ™.

We shall call the approximation in which the "nondiagonal® terms are rejected the "diagonal®
approximation. In the "diagonal" approximation, in particular, all the results for equilibrium
points of the balance or kinetic equations are obtained. This approximation yields a crude pic-
ture of the operation of a laser whose frequency spectrum contains no anomalously close fre-
quencies [56], i.e.,

[0 — @ | ~ 1. 11)

If close frequencies (11) are contained in the frequency spectrum, then in this frequency inter-
val the population inversion follows the field quasistatically and the retarding kernel

exp [yt — 7)] of Eq. (5) becomes of order unity; thus, the nonlinear terms have an especially
strong effect on the behavior of the system.

A more subtle effect of the oscillations in the inverted population that is described by the
"nondiagonal™ terms in Eq. (9) is observed even in studies of the stability of a single frequency
regime in Eq. (7) with ep= 0 when p # +n. This kind of regime is also called harmonic [3] or
monochromatic [57]. In accordance with the method described above, to study the stability of

T If we do not make assumption (4), thenthe factor wy' 2 in the terms (AB p)/ 4w} and ép goes into
w;z. In addition, to avoid misunderstanding, we note that the sum in Eq. (9) is over both posi-
tive and negative frequencies.



