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2 M.A. Evgrafov

Introduction

Infinite series, and their analogues —integral representations, became funda-
mental tools in mathematical analysis, starting in the second half of the seven-
teenth century. They have provided the means for introducing into analysis
all of the so-called transcendental functions, including those which are now
called elementary (the logarithm, exponential and trigonometric functions).
With their help the solutions of many differential equations, both ordinary
and partial, have been found. In fact the whole development of mathematical
analysis from Newton“up to the end of the nineteenth century was in the closest
way connected with the development of the apparatus of series and integral
representations. Moreover, many abstract divisions of mathematics (for
example, functional analysis) arose and were developed in order to study
series.

In the development of the theory of series two basic directions can be singled
out. One is the justification of operations with infinite series, the other is the
creation of techniques for using series in the solution of mathematical and applied
problems. Both directions have developed in parallel. Initially progress in the
first direction was significantly smaller, but, in the end, progress in the second
direction has always turned out to be of greater difficulty.

It would be a mistake to think that the justification of operations with series
interested our predecessors less than us, or that they valued techniques more
highly than rigour. Newton’s proofs were completely rigorous, and he was
reluctant to publish an insufficiently justified theory of fluxions. In my opinion,
the small advances in the justification of operations with infinite series is ex-
plained by the absence of a suitable language in which to conveniently speak of
these operations, and the creation of a language requires incomparably greater
efforts than the proof of individual results. As a rule, the creation of a language
is the work of several generations. In this respect we can refer to the example of
Euler, whose research affected his contemporaries by its depth and non-triviality,
but shocxed them with its lack of rigour. To a modern reader the arguments of
Euler do not seem to be so very non-rigorous. Simply, Euler already understood
the principle of analytic continuation (for single-valued analytic functions), but
the absence of a suitable language prevented him from transmitting this under-
standing to his contemporaries.

In the mid nineteenth century there was already a completely modern under-
standing of a convergent series which allowed one to prove the required results
with complete rigour and to distinguish valid arguments from invalid ones.
However, left over from the seventeenth and eighteenth centuries were many
puzzling unjustified arguments which, for all their lack of justification, led to true
results by significantly briefer routes. The expansion of the main points of these
arguments and the creation of new means of justifying operations with divergent

|| series and integrals was one of the basic achievements of the last century. A shost
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account of the stages in the development of the modern approach to these
juestions forms the content of the first chapter of this article. .

The second chapter is devoted to the second direction; techniques for using
-eries and integral representations in mathematical analysis. The selection of the
material for this chapter presented a most difficult problem, and the chosen
solution is purely subjective. I have desisted from an attempt to list results, since
this route would have required a much larger volume and would have ended
only with the production of a reference book; completely useless for reading. A
unique opportunity for me, it would appear. to give an exposition of fundamental
methods. However, even this path has its own obstacles. The fact is that almost
every method which has been used in analysis has generated, in its applications
to different objects, extensive theories. Some of these theories have been success-
fully concluded, some are being rapidly developed and some have come to a dead
end. In any of these cases a detailed story of these theories is inadvisable. I have
decided to recount in this article only those analytic methods which have not yet
been developed into a general theory. Almost all of it is around 100 years old (or
more), but is familiar only to sophisticated analysts. To establish the authorship
of these methods is most often impossiblé;-they represent the birth of “mathe-
matical folklore™.

I have tried not to overburden the article with historical or bibliographical
information (although the temptation in both directions was strong). In com-
niling the bibliography I have proceeded on the premise that its purpose is to
assist the reader to quickly find the necessary sources (and not to display the
erudition of the author). Therefore I have avoided references to obscure litera-
ture. If the reader wishes he can find exotic references in the bibliographies of the
books quoted.

Chapter 1
The Evolution of the Concept of Convergence

§ 1. Numerical Series

The theory of convergence of numerical series assumed its completely modern
form in the middle of the nineteenth century.' In the last 150 years there have
been no new results and no new notations. We will now list the basic definitions
and results.

"It would be correct to say that at the beginning of the nineteenth century they began to speak of
convergence of numerical series in a language close to the language of the textbooks of our time. The
idea of convergence itself, apparently, was not that different from that contemporary with Ancient
Greece, but to detach this notion from its method of expression is very difficult.
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A numerical series is an infinite sum
a0
Yup=u; +uy; fus+ - (L1
n=1

where the u, are real or complex numbers. The number u, is called the general
term of the series and the number

n
Se= D =1t + " +u,
k=1 .

is called a partial sum of the series.

No real meaning,? in general, is imposed on the infinite sum (1.1). If there is a
finite limit

s = lim s,
n—*ao0

then the symbolic notation (1.1) gains a meaning. In this case the series is called
convergent and s is called the sum of the series.

The Cauchy criterion. A numerical series (1.1) is convergent if and only if for
each ¢ > 0 there is a number N (g) such that for all n > N(¢) and for all m = 0 the
inequality

[ty +  Upym| <€

is satisfied.
A series is called absc!utely convergent if the series

©
2 lul
n=1

is convergent.

From the Cauchy criterion it is clear that:

Each absolutely convergent series is convergent.

If a series converges then its general term tends to zero.

Although the idea of convergence of a series was precisely formulated only at
the beginning of the nineteenth century the majority of the tests for convergence
were found somewhat earlier. We list the basic convergence tests, beginning with
tests for absolute convergence. .

All the tests for absolute convergence rest on the so-called comparison test:

Leta, + a, + --- be a convergent series with non-negative terms. If the general
term of (1.1) satisfies ? ’

|u,| < a,, n=12...,

then the series (1.1) converges absolutely.

2 A characteristic example of the slowness of change in the language of mathematicians. Even in
modern terminology there are still traces of lost beliefs. The definition given implicitly endows any
series (regardless of its convergence) with some value. In the seventeenth century it was firmly believed
that each series had a definite sum, although we might not know a method of finding it.
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The simplest infinite series, whose convergence was well-known even in anti-
quity, is the geometric progression with a multiplier less than one. Comparison
with a geometric progression gives us Cauchy’s test:

If

limsup (|u,|)'" < 1,
then the series (1.1) converges absolutely.
D’Alemberts test is obtained by the same route:
If
Unt1

u,

lim < 1,

n—w

then the series (1.1) converges absolutely.

Cauchy’s test is essentially stronger than D’Alembert’s test, but the latter is
rather more convenient to apply when the general term of the series is in the form
of products and quotients of factorials.

In order to obtain more precise absolute convergence tests by means of the
comparison test it is necessary to have a larger stock of convergent series. This
stock has been obtained via the integral calculus. With its help the following test
has been obtained, known as the Cauchy integral test:

Let a positive function f(x) be continuous for x = a and monotonely tending
to zero as x = +oo. If

lim fxf(t)dt < 00,

'then the series
flay+ fla+ )+ fla+2)+ - (1.2)

converges absolutely, and if

lim J f(t)dt =
x—+a0 a
then the series (1.2) diverges.

For

(log x)™*

log(l —a
S =x7  fl) =, Sy < tosllog )™

xlogx
the integrals can be calculated, and the Cauchy integral test gives us a scale of

comparisons sufficient for the majority of problems. Namely:
the series

2 ne g logn) * i (log(logn)™*

’
=3 nlogn

converge for « > 1 and diverge for a < 1.
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In the nineteenth century many other tests for absolute convergence were
devised but at present have been forgotten as unnecessary.?

Convergent but not absolutely convergent series are called conditionally con-
vergent. If absolutely convergent series are practically no different to finite sums,
then conditionally convergent series require a very much more careful treatment,
as is shown, for example, by the following result.

Riemann’s theorem. By varying the enumeration of the terms of a conditionally
convergent series (with real terms) it is possible to obtain u series which converges
to a preassigned sum, or even a divergent series.

A similar result holds for series with complex terms but the sum of the new
series may either be any point of the complex plane, or any point on some line
in the complex plane.*

There are comparatively few tests for conditional convergence of series which
do not reduce to tests for its absolute convergence. The most general is Abel’s test:

Let a,and b, (n = 1,2,...) be two sequences of complex numbers, having the
properties

<M< x, n=12...,

n
2
k=1

and

[l gk

|bysy — b,| < .

3
([}

Then the series

o

Y a,b,

n=1

converges (generally speaking, conditionally).

The best known is Leibniz’s test, which is obtained from Abel’s test when
a,=(—1)" and b, is a positive sequence monotonely converging to zero as
n— oo.

§2. Improper Integrals

The cohcept of an improper integral was formulated in the nineteenth century
and to this day is used in elementary textbooks on mathematical analysis,
however, from the modern point of view, it has lost its significance. We will say

3 A reader wishing to familiarise himself with the ancient tests for convergence may see [9, 30].
*This analogue of Riemann’s theorem for series with complex terms is set as a problem in Polya and
Szego [44] without reference to authorship.
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more about this later, but first we will give the definition of the concept and list
the basic tests for convergence.

Let a complex-valued function f(x) be Riemann integrable in each interval
(a,b'), where a < b’ < b, but not (Riemann) integrable in (a,b). Then we may
speak of an improper integral of f(x) on (a,b).? If the limit of the integrals of f(x)
over (a,b')existsas b’ — b, b’ < b, then we say that the improper integral converges
at the point A,

Similarly we define an improper integral convergent (or not) at the lower limit
of integration.

An improper integral of a function f(x) over a given interval is called absolutely
convergent if the improper integral of | f(x)| is convergent over the same interval.

Tests for convergence of improper integrals are not very different to the tests
for convergence of numerical series.

As for series the busic test is the comparison test:

Let g(x) be non-negative on(a, b) and let the integral of g(x) over (a, b) converge.
If | f(x)] < g(x) holds on (a,b) and f(x) is integrable on each interior interval, then
the improper integral of f(x) on (a, b) is absolutely convergent.

A scale of convergent and divergent integrals i1s constructed even more easily
than for series since integrals are more easily evaluated. We will give a scale of
convergence in two versions; one for a = 0 the other for b = +0.

We introduce the notation

log, x = log x; log, x = log(log, _, x), k=23,...

If a function f(x), which is integrable on each interval (a,c), satisfies for
sufficiently large x the inequality

(log, x)™*
xlog, x...log, , x

/() =M

for some positive integer k and some o > 1, then the improper integral of f(x)
over (a, +o0) is absolutely convergent (at infinity).

If a function f(x). which is integrable on each interval (c,b) with 0 < ¢ < b,
satisfies for suITxcieHlly small x the inequality

(log,(1/x))™*
xlog, (1/x)...log,_,(1/x)

fx)I=M

for some positive integer k and some « < 1, then the improper integral of f(x)
over (0, b) is absolutely convergent (at zero). "

For conditional convergence of improper integrals also there is a test similar
to Abel’s test for series.

Let the functions g(x) and h(x) be given on (a, +00), moreover let g(x) be
positive and monotonely tending to zero as x - +oo and let h(x) satisfy the

SFor b = oo Hardy named these integrals “infinite”.
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J.x h(t)dt

Then the improper integral of the function f(x) = g(x)h(x) on (a, + o) converges
(at infinity).

The essential difference between series and improper integrals is the absence
of a simple necessary condition for convergence of the integral (similar to the
general term of a convergent series tending to zero). In particular, in an integral
absolutely convergent at infinity, the integrand need not tend to zero. As an
example take the function

condition

<M< o, x 2 a.

flx) = i nmexp[—2*"(x —n)*}, m>0.

It is easily verified that the integral of this function over the whole line converges
(and, moreover, absolutely since f(x) is positive). At the same time it is easy to
see that

f(n) > n™, n=1,2, ...

We have already mentioned at the beginning of this section that from the
modern viewpoint the idea of an improper integral has lost its significance. Here
we must distinguish between absolute and conditional convergence.

First we will discuss the question of absolute convergence of improper integrals.

In modern mathematics the Riemann integral has for a long time given way
to the Lebesgue integral. If we consider an improper Riemann integral, then its
absolute convergence is a corollary of the existence of the integral as a Lebsgue
integral. However, in defence of the classical heritage it is worth saying that we
deal rather with a terminological improvement. In fact, the question of existence
of the Lebesgue integral of a measurable function easily reduces to a question of
absolute convergence of an improper Riemann integral. Namely, suppose we
have a Lebesgue integral

I=f S gsineXy)dv (1.3),
D

where D is a domain in R" and dv is the volume element in R". According to the
definition, the integral (1.3) exists if and only if the integral

1*=f 1f(xys-..,x,) dv : (1.3%)
D

exists (also in the Lebesgue sense). According to a well-known formula from
Lebesgue integration theory

I*= on tu(t)de (1.4)

0
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where u(t) is the Lebesgue measure of the set of points of D for which

If(xla'-'yxnn > 2

The function p(t) is non-negative and non-increasing. Therefore the function ¢u(r)
is Riemann integrable in each (a,b) with a > 0 and b < +00, and (1.4) is then an
improper Riemann integral. Its convergence (at both limits) is equivalent to the
existence of the integral (1.3*) and hence (1.3).

Thus, although in passing to the Lebesgue integral the notion of absolute
convergence loses its significance, the tests for absolute convergence remain
useful for research into the question of existence of the integral.

The replacement of the concept of an absolutely convergent Riemann integral
by the concept of existence of a Lebesgue integral is particularly convenient when
the question concerns multiple integrals. The fact is that the definition given
by us at the beginning of this section does not generalise well to the many-
dimensional case.

The position with conditional convergence of integrals is noticeably more
complex. The discussion of many-dimensional integrals suggests that conditional
convergence is far from the best means to attach a meaning to a non-existent
integral. In fact, for many-dimensional integrals, the significantly more con-
venient concept of the principal value of an integral is widely used. We will give
the definition of this concept in one of the simplest cases.

Let the function f(x,,..., x,) be continuous on the closure ofa domain D < R",
with the exception of one point (x9,...,x?). Denote by D, the domain obtained
from D by removing the ball

x = x2+ -+ |x—x22 <&

If the limit
lim | f(x,,...,x,)dv
€20 J D,
exists, then it is called the principal value® integral of f(x,,...,x,) over D. The

principal value integral is usually denoted
P f f(xqy...,x,)dv.
D

Both conditionally convergent integrals and principal value integrals are
rather feeble attempts to attach a definite value to a non-existent integral. In the
following sections we will speak of much more drastic measures taken in this
direction.

®The concept of principal value integral was introduced by Cauchy in the first half of the nineteenth
century but only became widely used in the twentieth century. The basic works on this concept are
[26] and [46]. For a detailed survey and bibliography see [8].
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§3. Regular Methods of Summation

In the seventeenth and even the eighteenth centuries mathematicians believed
that each series (convergent or divergent) had a well-defined sum; for convergent
series it was possible to find it simply by successively adding the terms, whereas
for divergent series more complicated methods were needed. Almost nobody
doubted the correctness of the formulae

=14+l —14- =172
1 =243 -4+ =1/4

since the sums of these series, when computed by various methods were the same.
The sum of the series

I 1420 314

was calculated by Euler to three decimal places using a method which we now
call the Euler summation method.

One of the most widely applied methods of evaluating sums of series is the
following.

First a certain number of partial sums of the series are calculated. If the sums
start to coincide (to the desired accuracy) after some index, then the value
obtained is regarded as the sum of the series. If the values of the partial sums
continue to noticeably diverge, then their arithmetic means are calculated and if
they start to coincide after some index, then the sum of the series is taken to be
the value obtained. Often the arithmetic means of the arithmetic means are taken

The practical utility of the method described is unquestionable. In fact, the
calculation of each successive term of a series is a fairly complicated problem.
Managing without these calculations at the expense of calculating the arithmetic
means of values already found meant containing a great saving in time.

Euler’s method 1s close in spirit to that just described but is more refined. To
wit, given a series u, + u, + u, + - Euler constructed a new series v, + v, +
vy + - as follows '

1 1/ n— 1 m— 1\
by = Sy, L=\ U+ | Uy + oo+ r;fl)l"')' n=223...
- = \

where <k> are the binomial coefficients. Having written down this calculation

scheme it is not difficult to see that the partial sums of the new series are not
much more difficult to calculate than in the method of arithmetic means. At the
same time Euler’s method, in many cases, gave significantly greater acceleration
of the convergence.

Both the method of arithmetic means and Euler’s method can be applied with
equal success to convergent and divergent series. It is easy to see that if the
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original series converges then both the methods lead to the sum. However, these
methods give determinate values even for the sums of many divergent series. In
the nineteenth century a great many methods of summation were proposed (the
invention of new methods of summation stopped with the advent of the twentieth
century).” The first fundamentally new step in the theory of summation methods
was made in 1911 by Toeplitz.® He proved a theorem describing all the regular
methods of summation—summation methods having the natural properties of
linearity and taking convergent series to convergent series.

It is more convenient to formulate Toeplitz's theorem in terms of sequences
rather than series. To apply the theorem to series the sequence of partial sums
is taken as the sequence.

Let

A=(a"k), nk=12..., k < n,

be an infinite triangular matrix. The matrix A associates with each sequence {s,, |
the sequence {s;'}, where

n

4

sd=Y ausi n=1,2,...
=i

We will say that {s,} is summable with sum s by the method defined by A, if
lim sA = s.

The summation method defined by A is called regular if s, — s implies s, — s.
Toeplitz’s theorem is as follows.

A summation method defined by a matrix A is regular if and only if the
following two conditions are satisfied,

i = = T2 05

and

lim a,, =0, k=12, ...
Summation methods defined by Toeplitz matrices include most of the known
summation methods. For example, the method of arithmetic means corresponds
to the matrix 4 with

a,, = 1/n, k=12 .. k < n,

and Euler’s method corresponds to the matrix with

7 A detailed survey of summation methods, containing the proofs of almost all the results and a great
deal of interesting historical information, is given in [27].

8Toeplitz's original paper was published in an inaccessible POllSh journal, but his resylts are
presented in detail in many books, for example, [27] or [58].
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1 (k
ank=?(n>, mk=12..  k=<n

Nevertheless, certain summation methods widely used in analysis do not fall
within the Toeplitz scheme; for example, the Abel-Poisson method. This method
attaches to the series «; + u, + uj... the sum

s= lim Y u,x"
x—+1-0 n=1

This defect was eliminated almost immediately by Steinhaus.®

The simplicity of Toeplitz’s criterion made it easy to construct regular summa-
tion methods with fairly unusual properties. For example, it turned out to be
possible to construct regular methods which summed the series 1 —1 + 1 —
1 + ---to any preassigned number. It could be said that Toeplitz’s theorem struck
a decisive blow at the naive belief in the existence of a definite sum for each series.

A very interesting subclass of Toeplitz summation methods are the Hausdorff
means, considered by Hausdorfl.'® These methods are defined by matrices A of
the form A = dud, where yu is a diagonal matrix with positive diagonal elements,

and
5:((_1)1‘(:))’ n,k=1,2,..., n;]‘

For Hausdorff means interesting answers to the question of comparative strengths
of methods and their consistency have been obtained. The research into Hausdorff
means completed the destruction of the naive belief mentioned above.

It appears that Euler already understood the necessity to be aware of the
“parentage” of a numerical series in order to sum it properly. In fact, Euler almost
always dealt with power series, and the methods of summation he applied were
by analytic continuation of power series. Thus, for example, the above-mentioned
Euler method of summation reduces to regarding the series u, + u, + u; + -
as the value of the power series

. s 5 X
at x = 1; to calculate this value the series is expanded in powers of y = s
X

and the value of the new series at y = % is taken. Many of the manipulations
carried out by Euler stopped being mysterious after the creation, by Riemann
and Weierstrass, of analytic function theory.

? Steinhaus’ result, published in the same journal issue as Toeplitz’s result, was obtained on the basis
of Toeplitz's result and using the same method. Therefore the more general Steinhaus result is often
called Toeplitz's theorem.

19The summation methods named Hausdorfl means were introduced not by Hausdorfl but by
Hurwitz. They are named after Hausdorfl because he studied them in depth in a series of papers [28]
and [29]. One of the chapters of [27] is devoted to an account of Hausdorff’s theory.



