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Preface

Self-stabilization is an established principle of modern distributed system design.
The advantages of systems that self-recover from transient failures, temporary se-
curity attacks, and spontaneous reconfiguration are obvious. Less obvious is how
the ambitious goal of recovering from the most general case of a transient fault,
namely that of an arbitrary initial state, can lead to a simpler system design than
dealing with particular cases of failures. In the area of mathematical problem-
solving, Pélya gave the term “the inventors paradox” to such situations, where
generalizing the problem may simplify the solution. The dramatic growth of dis-
tributed systems, peer-to-peer distribution networks, and large grid computing
environments confronts designers with serious difficulties of complexity and has
motivated the call for systems that self-recover, self-tune, and self-manage. The
principles of self-stabilization can be useful for these goals of autonomous system
behavior.

The Symposium on Self-Stabilizing Systems (SSS) is the main forum for re-
search in the area of self-stabilization. Previous Workshops on Self-Stabilizing
Systems (WSS) were held in 1989, 1995, 1997, 1999, and 2001. The previous
Symposium on Self-Stabilizing Systems (SSS) took place in 2003. Thirty-three
papers were submitted to SSS 2005 by authors from Europe (16), North America
(8), Asia (4), and elsewhere (5). From the submissions, the program committee
selected 15 for inclusion in these proceedings. In addition to the presentation of
these papers, the symposium event included a poster session with brief presen-
tations of recent work on self-stabilization.

The technical contributions to the symposium this year showed that the area
has matured deeply since its first mathematical definition more than thirty years
ago. Although there remains a core of four “classical” self-stabilization papers
(that close gaps and open problems), the main part of the proceedings is ded-
icated to either extensions of self-stabilization (six contributions, dealing with
snap-stabilization, code stabilization, self-stabilization with either dynamic, faulty
or Byzantine components) or to applications of self-stabilization (five contribu-
tions, related to operating systems, security, or mobile and ad hoc networks).

The symposium of 2005 was one of the events of MANWEEK 2005, which also
included the International Conference on Management of Multimedia Networks
and Services (MMNS 2005), the International Workshop on IP Operations and
Management (IPOM 2005), and the IEEE /IFIP International Workshop on Au-
tonomic Grid Networking and Management (AGNM 2005). The site for the sym-
posium and the other conferences was the Universitat Politécnica de Catalunya,
in Barcelona. The SSS 2005 sessions were held on October 26 and 27.

We thank the organizers of MANWEEK 2005, especially Joan Serrat of the
Universitat Politecnica de Catalunya, for making local arrangements.

August 2005 Ted Herman
Sébastien Tixeuil
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Snap-Stabilizing Optimal Binary Search Tree

Doina Bein!, Ajoy K. Dattal, and Vincent Villain?

! School of Computer Science, University of Nevada, Las Vegas
{siona, datta}@cs.unlv.edu
2 LaRIA,Université de Picardie Jules Verne, France
villain@laria.u-picardie.fr

Abstract. We present the first snap-stabilizing distributed binary
search tree (BST) algorithm. A snap-stabilizing algorithm guarantees
that the system always behaves according to its specification provided
some processor initiated the protocol. The maximum number of items
that can be stored at any time at any processor is constant (independent
of the size (n) of the network). Under this space constraint, we show a
lower bound of f2(n) on the time complexity for the BST problem. We
then prove that starting from an arbitrary configuration where the nodes
have distinct internal values drawn from an arbitrary set, our algorithm
arranges them in a BST order in O(n) rounds. Therefore, our solution
is asymptotically optimal in time and takes O(n) rounds. A processor 4
requires O(log s;) bits of space where s; is the size of the subtree rooted
at i. So, the root uses O(log n) bits. The proposed algorithm uses a heap
algorithm as a preprocessing step. This is also the first snap-stabilizing
distributed solution to the heap problem. The heap construction spends
O(h) (where h is the height of the tree) rounds. Its space requirement is
constant (independent of n). We then exploit the heap in the next phase
of the protocol. The root collects values in decreasing order and delivers
them to each node in the tree in O(n) rounds following a pipelined de-
livery order of sorted values in decreasing order.

Keywords: Binary search tree, heap, self-stabilization, snap-stabilization.

1 Introduction

Given a binary tree where every node holds one key (value) drawn from an
arbitrary set of real values, we design a snap-stabilizing distributed algorithm to
arrange the values in the tree to obtain a binary search tree. A self-stabilizing
[5,6] system, regardless of the initial states of the processors and initial messages
in the links, is guaranteed to converge to the intended behavior in finite time.
A snap-stabilizing [2,4] algorithm guarantees that it always behaves according
to its specification. In other words, a snap-stabilizing algorithm is also a self-
stabilizing algorithm which stabilizes in 0 steps.

The BST construction works as follows. First, the values in the tree are
re-arranged as a heap (we implement a MaxHeap but a MinHeap is equally
possible). Based on the heap arrangement, the root collects values in decreasing

T. Herman and S. Tixeuil (Eds.): SSS 2005, LNCS 3764, pp. 1-17, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 D. Bein, A.K. Datta, and V. Villain

order and delivers them to each node in the tree (a sequential, pipelined delivery
of sorted values in decreasing order). The tree structure is not modified by our
algorithm.

Related Work: A heap construction that supports insert and delete operations
in arbitrary states over a variant of the standard binary heap [3] with the maxi-
mum capacity of K items is proposed in [8]. It takes O(m log K) heap operations
to stabilize (m is the initial number of items in the heap). The space complexity
per node i is O(h;) where h; is the height of the subtree 7; in the binary heap
rooted at node . Stabilizing search 2-3 trees are investigated in [9]. The stabi-
lization time is O(nlogn) rounds where n is the number of nodes in the initial
state and the space complexity per node i is O(d;) where d; is the distance from
the root to node 1.

Contributions: This paper has two major contributions. It includes the first
snap-stabilizing binary search tree (BST) and the first snap-stabilizing heap al-
gorithm. Being snap-stabilizing gives our algorithms a unique feature — they
always behave as expected by their specifications. It should be noted that a
self-stabilizing algorithm is guaranteed to satisfy the desired specification only
in a finite time. In the context of the BST problem, in a self-stabilizing BST
solution, if the root initiates a BST computation, it is not guaranteed that the
tree will become a BST when the computation terminates. If the computation
is repeated (a bounded but unknown number of times), the self-stabilizing al-
gorithm guarantees that eventually, the tree will become a BST. The proposed
snap-stabilizing solution achieves a much better solution than the above. It en-
sures that when a BST computation initiated by the root terminates, the tree is
a BST. Thus, we do not need to repeat the computation unless the application
program demands repeated sorting of the values in the tree.

A key feature of our solution is that the maximum number of items that can
be stored at any time at any processor is constant (independent of the size (n) of
the network). Under this space constraint, our solution is asymptotically optimal
in time and takes O(n) rounds. A processor 7 requires O(log s;) bits where s; is
the size of the subtree rooted at i. So, the root uses O(logn) bits. The proposed
algorithm uses a snap-stabilizing heap algorithm as a preprocessing step. This is
also the first snap-stabilizing distributed solution to the heap problem. The cost
of the heap construction is O(h) rounds and constant (independent of n) space.

Outline of the Paper: In Section 2, we present the computational model,
snap-stabilization, and the specification of the BST problem. We present the
solution (the detail code of the algorithm) in Section 3. Due to lack of space, the
detail code of the predicates and macros are omitted. They are available in the
technical report [1]. We give a sketch of the correctness proof in Section 4, while
the detail proof is available in [1]. We finish the paper with some concluding
remarks in Section 5.
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2 Preliminaries

Distributed System: We consider an asynchronous binary tree network of n
processors with distinct ID’s. The root is denoted by r. We will use nodes
and processors interchangeably. The processors communicate using bi-directional
links. We assume the local shared memory model of communication. The pro-
gram of every processor consists of a set of shared variables and a finite set
of actions. A processor can only write to its own variables, and read its own
variables and variables owned by the neighboring processors. Each action is of
the following form: < label > < guard > — < statement >. The guard of
an action in the program of any process p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard evaluates to
true. We assume that the actions are atomically executed, meaning, the evalua-
tion of a guard and the execution of the corresponding statement of an action,
if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of a
system is the product of the states of all processors. We will refer to the state of
a processor and system as a (local) state and (global) configuration, respectively.
A processor p is said to be enabled in a configuration + if there exists at least an
action A such that the guard of A is true in y. We consider that any processor p
executed a disabling action in the computation step «y; — 7;41 if p was enabled
in 7; and not enabled in v;41, but did not execute any action between these
two configurations. (The disabling action represents the following situation: At
least one neighbor of p changed its state between ~; and 7;;1, and this change
effectively made the guard of all actions of p false.) Similarly, an action A is said
to be enabled (in ) at p if the guard of A is true at p (in ). We assume an
unfair and distributed daemon. The unfairness means that a processor p may
never be chosen by the daemon to execute an action even if it is continuously
enabled unless it is the only enabled processor.

A computation step is a transition between two configurations where the
transition contains at least one action and at most one action per processor.
The distributed daemon implies that during a computation step, if one or more
processors are enabled, then the daemon chooses at least one (possibly more) of
these enabled processors to execute an action.

In order to compute the time complexity measure, we use the definition of
round [7]. This definition captures the execution rate of the slowest processor in
any computation. Given a computation e, the first round of e (let us call it ¢’) is
the minimal prefix of e containing the execution of one action (an action of the
protocol or the disable action) of every continuously enabled processor from the
first configuration. Let € be the suffix of e, i.e., e = €’e”. Then second round of
e is the first round of ¢, and so on.

Snap-Stabilization: We assume that in a normal execution, at least one processor
(called, the initiator) initiates the protocol upon an external (w.r.t. the protocol)
request by executing a special type of action, called an initialization action.
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Definition 1 (Snap-Stabilization). Let P be a protocol designed to solve a
task T'. P is called snap-stabilizing if and only if, starting from any configuration,
any ezecution E of P always satisfies the specification of T'.

Specification 21 (BST Problem). A protocol P is considered as a BST al-
gorithm, if and only if the following conditions are true: (i) Any computation
initiated by the root terminates in finite time. (i) When the computation termi-
nates, the values in the tree satisfy the BST property.

Remark 1. To prove that a BST algorithm is snap-stabilizing, we have to show
that every execution of the protocol satisfies the following two properties: (i)
starting from any configuration, the root eventually executes an initialization
action. (ii) Any execution, starting from this action, satisfies Specification 21.

The time needed to reach the configuration where the initialization action is
enabled is called the delay of the protocol.

3 Binary Search Tree Algorithm

In this section, we describe the data structures used, followed by a detailed
explanation of how the algorithm works when the initiator (the root process)
starts the algorithm until the values are arranged in the tree such that it becomes
a BST. We divide the algorithm code in two parts: module Heap (Subsection
3.1) and module Sort (Subsection 3.2).

A node 4 holds four constants. The constants are not changed by the BST
algorithm. The constants are: the value V.i that needs to be sorted in the tree,
the parent ID p.i, the left child ID left.7, and the right child ID right.i. If i does
not have any of the above three neighbors, the corresponding constant’s value
is represented as L. For example, for the root node r, p.r = 1, and for the leaf
nodes, left.i = right.i = L. We denote the set of neighbors and set of children
of i by N.i and D.i, respectively. We assume that the tree has n nodes and has a
height of h. Let T} be the subtree rooted at i. Then s; and h; denote the number
of nodes and height, respectively, of T;.

Our BST construction is transparent to the changes (addition or removal
of notes) in the tree structure. If such changes occur, then the algorithm will
incorporate the changes “on the fly” by nodes either entering an abnormal sit-
uation with respect to their new neighbors, or by completing the current cycle
and restarting a new cycle with added/deleted values. We assume that after the
add/remove operations/queries are executed, our algorithm will be initiated by
the root and a new BST tree will be constructed in O(n) rounds. This makes the
lower bound of {2(n) under the constraints considered in this work higher than
that of the usual functions (e.g., find, insert, and delete) for a non-stabilizing
BST.

The basic idea of the algorithm is as follows: The algorithm runs in two
phases. The root initiates the BST computation by starting a heapify process
(shown as Module Heap in the algorithm) to create a maxheap of the tree. Then



Snap-Stabilizing Optimal Binary Search Tree 5

the root initiates the second phase (shown as Sort module). During this phase,
the values are placed in the nodes in the BST order, placing the highest value
first, the second highest value next, and so on. As the maxheap has been created
in the previous phase, the root holds the maximum value of the tree. This highest
value is sent to the rightmost node (say, ¢) of the tree. The destination of the
second highest value (say, second) is dependent on if 7 is a leaf or an internal
node. If i is a leaf node, then second is sent to the parent of ¢ (say, 7). Then the
third highest value (say, third) will be sent to the left child of j (if present) or
to the parent of j. If 4 is an internal node, then second goes to the left child of
1. Thus, values are placed in the tree following a right-parent-left order.

The algorithm will be similar if we have constructed a minheap instead of the
maxheap. In that case, in the second phase, the values will be placed following
a left-parent-right order. From now on, heap will imply maxheap. If a node %
satisfies the maxheap property with respect to its parent and children, we say 4
is in heap order or in HO in short.

Some of the variables used by a node i are described below. The rest of the
variables will be defined in the informal explanations in the next two subsec-
tions. The sorted value SV.i will contain the final sorted value at the end of
the algorithm. tSV.i is used to store a temporary sorted value. The heap value
HYV.i is the result of the first phase (Heap module). The module Sort needs to
maintain the size of the subtrees rooted at each node. This size variable s.i for
node ¢ is computed in Heap and used in Sort.

A node may use at most seven states (see Figure 1 below). Module Heap uses
six states: C (cleaning state), B (ready to start the heapify process), M, M'eft,
M7t (the states corresponding to if the maximum heap value HV is based
on its own heap value, the maximum heap value of its left child, the maximum
heap value of its right child, respectively), P (the Heap phase finished at this
node, and the Sort phase is ready to start at this node). Module Sort uses C,
P, and T (the algorithm is terminated).

left Mrighl

M\/

M/

(leaf nodes)

Fig. 1. The seven states used by the algorithm

A configuration in which the root is in state C is called a clean configuration.
Starting from such a configuration, all other nodes in the tree will eventually
reach C state. If all nodes are in C state, then the corresponding configuration
is termed as a normal starting configuration. Any configuration reachable from
a normal starting configuration by executing the algorithm guards is called a
normal configuration. All other configurations are considered to be abnormal.
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Some abnormal configurations can be locally detected by the processors. This
local detection is implemented using the abnormal predicates in Algorithms 3.1
and 3.2. These predicates are used as guards of correction actions in order
to avoid possible deadlocks and to speed up the protocol. Unfortunately, some
problems of abnormal configurations cannot be locally detected. For example,
the initial configuration may contain some sorted values (in ¢SV’) that do not
match any V values. The correction actions can remove the locally detectable
problems in O(h) rounds even before the root executes its initialization action.
The other problems are eventually removed during the suffix of the protocol
starting from the initialization action of the root.

Starting from an abnormal configuration, an execution not necessarily will
bring the system to a normal starting configuration, but to a normal configura-
tion. When a node has an abnormal predicate enabled, it will change its state
to C, and all the nodes in its subtree will enter C' state, but not necessarily its
parent (e.g. if the parent state is B).

Starting from a normal configuration where the root is able to execute the
initialization action with no delay, the tree will become a BST in O(n) rounds. In
general, the worst delay is O(n) rounds because the worst initial configuration is
the one where no node has any of the abnormal predicates enabled, but there is a
node with an incorrect ¢SV value (that does not match any V' values). Thus, the
abnormal configurations do not increase the asymptotic time bound. So, starting
from any configuration, the tree will become a BST in O(n) rounds.

The interface between the two layers (application and BST) at a node i is
implemented by two variables: input value to the sorting protocol V.4 and the
final or output sorted value SV.i. However, every time the BST protocol runs, we
do not want to disturb the application layer by writing (or overwriting) the value
of SV.i unless the value has changed. So, when the BST protocol terminates,
i’s sorted value is first placed in ¢SV.i. Then ¢tSV.i and SV.i are compared. The
value of tSV.i is copied into SV.i only if the values are different (see Actions
rP3, iP3, and [P1&3 of module Sort).

3.1 Constructing the Heap

Upon receiving an external command to sort, if the root is enabled to start the
BST protocol, it starts the heapify process (module Heap). The root is enabled
to initiate if it is in C' and its children are in C. The root broadcasts the heapify
command by changing its state to B. As this message (wave) goes down the
tree, all internal nodes change their state from C to B. When this broadcast
wave reaches the leaf nodes, they change their state from C to M to initiate
the heapify process (or wave). During this upward wave, the nodes compute two
things: the heap value (the maximum value in their subtrees) and the size of
their subtrees. When this wave reaches the root, the root changes its state to
M and the heap is created. The root then initiates another top-down wave by
changing its state from M to P. The next phase, i.e., the BST construction
phase starts from the P state. We now describe the heap construction in more
detail by referring Algorithm 3.1.
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1. (Start building a Heap) If the root is in C, its children will change to C
in at most one round. Either Action aCm or aCb is enabled, and since it is the
only enabled action, it is eventually executed in at most one round. When its
children change to C, the root changes its state from C to B and sets HV to its
internal value V (Action CB). An internal node changes its state from C' to B
when its parent is in B and its children are in C'. An internal node also initializes
its heap value HV with its input (or initial) value V (Action CB).

Figure 2(a) shows the clean configuration for a 11-node binary tree. After B
wave is executed top-down, the tree state is shown in Figure 2(b). We show only
the node’s internal value V, state S, and heap value HV. Symbol * means that
the value is not important.

120,C,120 120,B,120

130,%* 130,B,130 105,B,105
100,%,* 145,B,145 100,B,100

60,%,*
225,% 25.%% 225,C.* 25,C

60,C,*

(a) Clean configuration (b) B wave is executed top-down

Fig. 2. Initial stage of constructing the heap

2. (Calculating Heap and s.i Values) A leaf node i changes its state from C
to M and executes macro init(i) (Action CM). In the macro init(i), the node
i sets the size of its subtree, s.i to 1 and sets the heap values of its left ({HV)
and right (rHV') subtrees to L (indicating a non-existent value).

When a parent of a leaf node detects that all its children are in state M
(Action BM* is enabled), it executes macro init(i), change from B to M, and
executes macro set_HV s(i). If the (parent) node holds a value smaller than any
of the heap values of its children, it chooses as its heap value the larger heap value
(IHV or rHV) among its children and pushes its own heap value (HV') toward
the child that was holding the larger heap value. This heapification process goes
up the tree until it reaches the root.

Predicate update_HV s(i) is true when due to the heapification process at
the parent of i, i’s heap value became smaller than the values of its children. So,
HV.i needs to be swapped with that of one of its children. Predicate h_order(i)
is true if 7 satisfies the heap property with respect to its children.

For a non-leaf node ¢ that is about to execute the macro set_HV s(i), we consider
three cases.

Case 1). HV.i is larger than the heap values of its children. So, heap order is
maintained at 7. Then the macro set_HV s(i) does not change the variables S.i
(remains M) and HV.i.



