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1

Introduction

The Oxford English Dictionary provides the following two related definitions
of the word phylogeny:

I. The pattern of historical relationships between species or other groups
resulting from divergence during evolution.

2. A diagram or theoretical model of the sequence of evolutionary divergence
of species or other groups of organisms from their common ancestors.

In short, a phylogeny is the “family tree” of a collection of units designated
generically as faza. Figure 1.1 is a simple example of a phylogeny for four
primate species. Strictly speaking, phylogenies need not be trees. For instance,
biological phenomena such as hybridization and horizontal gene transfer can
lead to non-tree-like reticulate phylogenies for organisms. However, we will
only be concerned with trees in these notes.

Phylogenetics (that is, the construction of phylogenies) is now a huge en-
terprise in biology, with several sophisticated computer packages employed
extensively by researchers using massive amounts of DNA sequence data to
study all manner of organisms. An introduction to the subject that is accessi-
ble to mathematicians is [67], while many of the more mathematical aspects
are surveyed in [125].

It is often remarked that a tree is the only illustration Charles Darwin
included in The Origin of Species. What is less commonly noted is that Darwin
acknowledged the prior use of trees as representations of evolutionary relation-
ships in historical linguistics - see Figure 1.2. A recent collection of papers on
the application of computational phylogenetic methods to historical linguistics
is [69].

The diversity of life is enormous. As J.B.S Haldane often remarked! in
various forms:

' See Stephen Jay Gould’s essay “A special fondness for beetles™ in his book [77]
for a discussion of the occasions on which Haldane may or may not have made
this remark.
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Orangutan Gorilla Chimpanzee Human

el L

Fig. 1.1. The phylogeny of four primate species. Illustrations are from the Tree of
Life Web Project at the University of Arizona

I don’t know if there is a God, but if He exists He must be inordinately
fond of beetles.

Thus, phylogenetics leads naturally to the consideration of very large trees
- see Figure 1.3 for a representation of what the phylogeny of all organ-
isms might look like and browse the Tree of Life Web Project web-site at
http://www.tolweb.org/tree/ to get a feeling for just how large the phylo-
genies of even quite specific groups (for example, beetles) can be.

Not only can phylogenetic trees be very large, but the number of possible
phylogenetic trees for even a moderate number of taxa is enormous. Phyloge-
netic trees are typically thought of as rooted bifurcating trees with only the
leaves labeled, and the number of such trees for n leaves is (2n—3) x (2n—>5) x
S x 7T x5 x3x1 - see, for example, Chapter 3 of [67]. Consequently, if we try
to use statistical methods to find the “best” tree that fits a given set of data,
then it is impossible to exhaustively search all possible trees and we must
use techniques such as Bayesian Markov Chain Monte Carlo and simulated
annealing that randomly explore tree space in some way. Hence phylogenetics
leads naturally to the study of large random trees and stochastic processes
that move around spaces of large trees.
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Anatolian

ltahe

Iraman

Celuc Tochanian
Germanice

Armentan

Baltic Slavic

Albanian

Fig. 1.2. One possible phylogenetic tree for the Indo-European family of languages
from [1185]

Although the investigation of random trees has a long history stretching
back to the eponymous work of Galton and Watson on branching processes,
a watershed in the area was the sequence of papers by Aldous [12, 13, 10].
Previous authors had considered the asymptotic behavior of numerical fea-
tures of an ensemble of random trees such as their height, total number of
vertices, average branching degree, ete. Aldous made sense of the idea of a se-
quence of trees converging to a limiting “tree-like object”, so that many such
limit results could be read off immediately in a manner similar to the way
that limit theorems for sums of independent random variables are straight-
forward consequences of Donsker’s invariance principle and known properties
of Brownian motion. Moreover, Aldous showed that, akin to Donsker’s invari-
ance principle, many different sequences of random trees have the same limit,
the Brownian continuum random tree, and that this limit is essentially the
standard Brownian excursion “in disguise™.

We briefly survey Aldous’s work in Chapter 2, where we also present some
of the historical development that appears to have led up to it, namely the
probabilistic proof of the Markov chain tree theorem from [21] and the algo-
rithm of [17, 35] for generating uniform random trees that was inspired by that
proof. Morcover, the asymptotic behavior of the tree- generating algorithin
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Animals
Plants

Protists

A\

\ \ Bactena
‘Archaea

Fig. 1.3. A somewhat impressionistic depiction of the phylogenetic tree of all life
produced by David M. Hillis, Derrick Zwickl, and Robin Gutell, University of Texas

5, which is

when the number of vertices is large is the subject of Chapter
based on [63].

Perhaps the key conceptual difficulty that Aldous had to overcome was
how to embed the collection of finite trees into a larger universe of “tree-like
objects” that can arise as re-scaling limits when the number of vertices goes
to infinity. Aldous proposed two devices for doing this. Firstly, he began with
a classical bijection, due to Dyck, between rooted planar trees and suitable
lattice paths (more precisely, the sort of paths that can appear as the “positive
excursions” of a simple random walk). He showed how such an encoding of
trees as continuous functions enables us to make sense of weak convergence
of random trees as just weak convergence of random functions (in the sense
of weak convergence with respect to the usual supremum norm). Secondly, he
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noted that a finite tree with edge lengths is naturally isomorphic to a compact
subset of ¢!, the space of absolutely summable sequences. This enabled him to
treat weak convergence of random trees as just weak convergence of random
compact sets (where compact subsets of ¢! are equipped with the Hausdorft
distance arising from the usual norm on ¢!).

Although Aldous’s approaches are extremely powerful, the identification
of trees as continuous functions or compact subsets of ¢! requires, respectively.
that they are embedded in the plane or leaf-labeled. This embedding or label-
ing can be something of an artifact when the trees we are dealing with don’t
naturally come with such a structure. It can be particularly cumbersome when
we are considering tree-valued stochastic processes, where we have to keep
updating an artificial embedding or labeling as the process evolves. Aldous’s
perspective is analogous to the use of coordinates in differential geometry:
explicit coordinates are extremely useful for many calculations but they may
not always offer the smoothest approach. Moreover, it is not clear a prior:
that every object we might legitimately think of as tree-like necessarily has
a representation as an excursion path or a subset of ¢!, Also. the topologies
inherited from the supremum norm or the Hausdorft metric may be too strong
for some purposes.

We must. therefore. seek more intrinsic ways of characterizing what is
meant by a “tree-like object”. Finite combinatorial trees are just graphs that
are connected and acyclic. If we regard the edges of such a tree as intervals, so
that a tree is a cell complex (and. hence, a particular type of topological space),
then these two defining properties correspond respectively to connectedness
in the usual topological sense and the absence of subspaces that are homeo-
morphic to the circle. Alternatively, a finite combinatorial tree thought of as
a cell complex has a natural metric on it: the distance between two points is
just the length of the unique “path™ through the tree connecting them (where
each edge is given unit length). There is a well-known characterization of the
metrics that are associated with trees that is often called (Buneman’s) four
point condition - see Chapter 3. Its significance seems to have been recognized
independently in [149, 130, 36] - sce [125] for a discussion of the history.

These observations suggest that the appropriate definition of a “tree-like
object” should be a general topological or metric space with analogous prop-
erties. Such spaces are called R-trees and they have been studied extensively
see [46, 45, 137, 39]. We review some of the relevant theory and the connection
with O-hyperbolicity (which is closely related to the four point condition) in
Chapter 3.

We note in passing that R-trees, albeit ones with high degrees of symmetry,
play an important role in geometric group theory — see. for example, [126, 110.
127, 30, 39]. Also, 0-hyperbolic metric spaces are the simplest example of the
d-hyperbolic metric spaces that were introduced in [79] as a class of spaces
with global features similar to those of complete, simply connected manifolds
of negative curvature. For more on the motivation and subsequent history
of this notion, we refer the reader to [33, 39, 80]. Groups with a natural
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d-hyperbolic metric have turned out to be particularly important in a number
of arcas of mathematics, see [79, 20, 40. 76].

In order to have a nice theory of random R-trees and R-tree-valued sto-
chastic processes, it is necessary to metrize a collection of R-trees, and, since
R-trees are just metric spaces with certain special properties, this means that
we need a way of assigning a distance between two metric spaces (or, more cor-
rectly, between two isometry classes of metric spaces). The Gromov-Hausdorff
distance — see [80, 37, 34]  does exactly this and turns out to be very pleasant
to work with. The particular properties of the Gromov-Hausdorff distance for
collections of R-trees have been investigated in [63, 65, 78] and we describe
some of the resulting theory in Chapter 4.

Since we introduced the idea of using the formalism of R-trees equipped
with the Gromov-Hausdorff metric to study the asymptotics of large random
trees and tree-valued processes in [63, 65], there have been several papers that
have adopted a similar point of view — see, for example, [49, 101, 102, 103, 50,
S1. 78].

As we noted above, stochastic processes that move through a space of
finite trees are an important ingredient for several algorithms in phylogenetic
analysis. Usually, such chains are based on a set of simple rearrangements
that transform a tree into a “neighboring” tree. One standard set of moves
that is implemented in several phylogenetic software packages is the set of
subtree prune and re-graft (SPR) moves that were first described in [134] and
are further discussed in [67, 19, 125]. Moreover, as remarked in [19],

The SPR operation is of particular interest as it can be used to model
biological processes such as horizontal gene transfer and recombina-
tion.

Section 2.7 of [125] provides more background on this point as well as a com-
ment on the role of SPR moves in the two phenomena of lineage sorting and
gene duplication and loss. Following [65], we investigate in Chapter 9 the be-
havior when the number of vertices goes to infinity of the simplest Markov
chain based on SPR moves.

Tree-valued Markov processes appear in contexts other than phylogenetics.
For example, a number of such processes appear in combinatorics associated
with the random graph process, stochastic coalescence, and spanning trees —
see [115]. One such process is the wild chain, a Markov process that appears as
a limiting case of tree-—valued Markov chains arising from pruning operations
on Galton Watson and conditioned Galton- Watson trees in [16, 14].

The state space of the wild chain is the set T* consisting of rooted R-
trees such that each edge has length 1. each vertex has finite degree, and
if the tree is infinite there is a single path of infinite length from the root.
The wild chain is reversible (that is, symmetric). Its equilibrium measure is
the distribution of the critical Poisson Galton-Watson branching process (we
denote this probability measure on rooted trees by PGW(1)). When started in
astate that is a finite tree, the wild chain holds for an exponentially distributed
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amount of time and then jumps to a state that is an infinite tree. Then, as
must be the case given that the PGW(1) distribution assigns all of its mass
to finite trees, the process instantancously re-enters the set of finite trees.
In other words, the sample paths of the wild chain bounce backwards and
forwards between the finite and infinite trees.

As we show in Chapter 6 following [15], the wild chain is a particular in-
stance of a general class of symmetric Markov processes that spend Lebesgue
almost all of their time in a countable, discrete part of their state-space
but continually bounce back and forth between this region and a continu-
ous “boundary”. Other processes in this general class are closely related to
the NMarkov processes on totally disconnected Abelian groups considered in
[59]. A special case of these latter group-valued processes, where the group is
the additive group of a local field such as the p-adic numbers. is investigated
in[4, 5, 7.6, 2,8 9. 87, 131, 68].

Besides branching models such as Galton Watson processes, another fa-
miliar source of random trees is the general class of coalescing models — see
[18] for a recent survey and bibliography.

Kingman's coalescent was introduced in [90, 89] as a model for gencalogies
in the context of population genetics and has since been the subject of a large
amount of applied and theoretical work - see [136, 144, 83] for an indication
of some of the applications of Kingman's coalescent in genetics.

Families of coalescing Markov processes appear as duals to interacting par-
ticle systems such as the voter model and stepping stone models . Motivated
by this connection, [22] investigated systems of coalescing Brownian motions
and the closely related coalescing Brownian flow . Coalescing Brownian mo-
tion has recently become a topic of renewed interest, primarily in the study
of filtrations and “noises™ - see, for example, [140, 132, 138, 55].

In Chapter 8 we show, following [60, 44], how Kingman's coalescent and
systems of coalescing Brownian motions on the circle are each naturally as-
sociated with random compact metric spaces and we investigate the fractal
properties of those spaces. A similar study was performed in [28] for trees aris-
ing from the beta-coalescents of [116]. There has been quite a bit of work on
fractal properties of random trees constructed in various ways from Galton-
Watson branching processes; for example, [82] computed the Hausdorfl di-
mension of the boundary of a Galton Watson tree equipped with a natural
metric — see also [104, 96].

We observe that Markov processes with continuous sample paths that take
values in a space of continuous excursion paths and are reversible with respect
to the distribution of standard Brownian excursion have been investigated in
[148. 147, 146]. These processes can be thought of as R-tree valued diffusion
processes that are reversible with respect to the distribution of the Brownian
continuum random tree.

Moving in a slightly different but related direction, there is a large lit-
erature on random walks with state-space a given infinite tree: [145, 105]
are excellent bibliographical references. In particular, there is a substantial
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amount. of research on the Martin boundary of such walks beginning with
[52, 38, 122].

The literature on diffusions on tree like or graph-like structures is more
modest. A general construction of diffusions on graphs using Dirichlet form
methods is given in [141]. Diffusions on tree-like objects are studied in [42, 93]
using excursion theory ideas, local times of diffusions on graphs are investi-
gated in [53. 54|, and an averaging principle for such processes is considered
in [71]. One particular process that has received a substantial amount of at-
tention is the so-called Walsh's spider. The spider is a diffusion on the tree
consisting of a finite number of semi infinite rays emanating from a single
vertex — see [142, 26, 139, 25].

A higher dimensional diffusion with a structure somewhat akin to that
of the spider, in which regions of higher dimensional spaces are “glued” to-
gether along lower dimensional boundaries, appears in the work of Sowers
[133] on Hamiltonian systems perturbed by noise — see also [111]. A general
construction encompassing such processes is given in [64]. This construction
was used in [24] to build diffusions on the interesting fractals introduced in
[95] to answer a question posed in [84].

In Chapter 7 we describe a particular Markov process with state-space an
R-tree that does not have any leaves (in the sense that any path in the tree can
be continued indefinitely in both directions). The initial study of this process
in [61] was motivated by Le Gall's Brownian snake process — see, for example,
[97, 98, 99, 100]. One agreeable feature of this process is that it serves as a
new and convenient “test bed” on which we can study many of the objects of
general Markov process theory such as Doob h-transforms, the classification
of entrance laws, the identification of the Martin boundary and representation
of excessive functions, and the existence of non-constant harmonic functions
and the triviality of tail o-fields.

We use Dirichlet form methods in several chapters, so we have provided
a brief summary of some of the more salient parts of the theory in Appen-
dix A. Similarly, we summarize some results on Hausdorff dimension, packing
dimension and capacity that we use in various places in Appendix B.
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Around the Continuum Random Tree

2.1 Random Trees from Random Walks

2.1.1 Markov Chain Tree Theorem

Suppose that we have a discrete time Markov chain X = { X, },eny, with state
space V and irreducible transition matrix P. Let 7 be the corresponding sta-
tionary distribution. The Markov chain tree theorem gives an explicit formula
for m, as opposed to the usual implicit description of 7 as the unique proba-
bility vector that solves the equation 7P = 7. In order to describe this result,
we need to introduce some more notation.

Let G = (V| F) be the directed graph with vertex set V and directed edges
consisting of pairs of vertices (i, j) such that p,; > 0. We call p;; the weight
of the edge (7, ).

A rooted spanning tree of GG is a directed subgraph of GG that is a spanning
tree as an undirected graph (that is, it is a connected subgraph without any
cycles that has V' as its vertex set) and is such that each vertex has out-degree
1, except for a distinguished vertex, the root, that has out-degree 0. Write A
for the set of all rooted spanning trees of GG and A; for the set of rooted
spanning trees that have / as their root.

The weight of a rooted spanning tree T'is the product of its edge weights,
which we write as weight (7).

Theorem 2.1. The stationary distribution © s given by

Dorea, Weight(T7)

Ld

U — = '
o S e weight(T)
Proof. Let X = {X’,, bnez be a two-sided stationary Markov chain with the

transition matrix P (so that X,, has distribution 7 for all n € Z).
Define a map f: V> — A as follows - see Figure 2.2.

e The root of f(x) is x.



