COMPUTER LANGUAGE Product|V|ty Award Wlnner

iﬁﬁﬁ%@\ﬁzlﬁ

(#&iThR) (3R3ZhR)

Object-Oriented
Software
Engineering

4
A Use Case Driven Approach

lvar Jacobson 5

Magnus Christerson Patrik Jonsson Gunnar Overgaard

N B S AL

®

% POSTS & TELECOM PRESS

BT R 5 Hobt

DRXIRIR Lie
(2 1J)

Object-Oriented Software Engineering
A Use Case Driven Approach

(& 3 RO

o §

Ivar Jacobson

Magnus Christerson Patrik Jonsson 3
Gunnar Overgaard

A RS B AR

B E (CIP) %dg

MY R TR 7) HESAi#R (Jacobson, L) 4w¥E. —EITA.
—dbrt: ARHHL L R AL, 2003.9

(R LR RS EM)

ISBN 7-115-11163-4

L. 1L f.. UL EENRES - EFRE—8M -3 1Iv. TP312
th E AR A B 518 CIP HdflE 4% 7 (2003) 35 071438 5

B AL B

Ivar Jacobson Magnus Christerson Patrik Jonsson Gunnar Overgaard: Object-Oriented Software Engineering:
A use Case Driven Approach

ISBN 0201544350

© 1992 by the ACM Press, A Division of the Association for Compuflng Machinery, Inc(ACM)

This edition of Object-Oriented Software Engineering, Second Edition 15 pubhshed by arrangement with Pearson

Education Limuted.

AHEITHENAEH Pearson Education 1§ SIZH A RABA AR HHEE, kEHEEEEFA, MHEE
A TEBLUER AR E RIS E.
MRARERA, R,

AT RSB
EEFMRRGETE (BITRED (R

¢ E Ivar Jacobson Magnus Christerson

Patrik Jonsson Gunnar Overgaard

TEgE a1 W

& ARUEBH A HRCRKAT JERi%IR & M5t 14 5
BB 100061 BT i&ff 315@ptpress comcn
®it http //www ptpress com cn
WERL 010-67132705
JEIR B E SO A R A B HIE
e EE & Al ED R RR 2 B BN
BB BB RAITIT A

& JFEk 787X1092 1/16

ENgK 3525
£, 798 T 20039 HE 1R
EN¥ 1-3 500 2003 4E 9 BALF 5 1 KEIRI

EFEENERBC BEF: 01-2003-0391 5
ISBN 7-115-11163-4/TP « 3376
Efr: 49.00 7T
APLNMBENRRBEE, IFSAHEKFR B15: (010) 67129223

ABRE

BATT R ITIEFZK Ivar Jacobson 7EA 54112 HH i OOSE (I MR8tk TH2) HiEEM
M REEESPRELNHEZ —, ABIRIEM Use Case 487 HIE7E 00 ARG EA
EERERHA.

ABEENB THRIELEERORE T %, X BSA=8%4, B—Bs—TFFN, A
ARE T RELEERNBERMA, LS8, AFEREFREN, DLIBERER, &4
LAY, WAANENATHANSZESU RS ENARRETRT . B _Hr—ES,
BHETEAR, B 6 ENHAT OOSE HalilS, HMEET hH a%BEXEEs. B FHEY
Wik T O MR T vE . BT RMPEERR TiX 055 - a3 SR B Se it R SR
HRGFH. 811 ZAM6, METHLARAE, WTEAENARFRETE. 812 =049
TR, B=3o—NAH, MHT OOSE N A LK AE —Fhif 00 FF & 5 78 2 e i 41 2350
BHN. ARSIV BERERTHAEANE T E. KBRFINMBTHEERNERES.

AHRIK 1992 FERMFFRIERER KK (Productivity Award), |5 I 2 ik T 5245
B EHRENZMEE. RBEFEN ARSI AR E R A KRB S, ey
B TEAEBEAN RS E R R

XE—#ERFANNLEE.

Ivar Jacobson f&—47 3K B Tk F#%E, —MREFFRITERKKIT. M 1967 FE/FF
BB THREHN TV TREERSBEBHIFR. hiEEZVESATHTRERETRME
BLRMUBEMF4E, BT —RIFEGIHERFFBER, W: F5E (Sequence diagram).
#FEE (Collaboration diagram). (54U i BHiES SDL. ETAM KA RidHe.
RRIRENTT R A L%, T Objectory WIREFAE T IXELEF T BR K —A 7=, Jacobson
B IXANE 5 T A BLEI R AR TR A OOSE (TH M XT S B TH2). M 20 4D 90 ERFHF IS,
55 Grady Booch. James Rumbaugh —i2, #itTELZMNGE—EEES (UML) ME—JFK
i# (UP), OOSE M| UML #1 UP MEEH I -

A RXT OOSE M&mfid., NM4fsH, BT HELMFRIMRE, OOSE BER—MFF kit
2, hR—FIFFEITE. W UML R UP JHh, MIETRITRITE. FRER. BEIEE]
ITHHRRI B .

OOSE MR /&, BREAEZ TIFELITZERNTIVHFR, ERERENFKT
KRR, OOSE K EFR, WHRAEIMEE B3y, KA ERAFRBIERGH
T, REHEARSEEFHKE. \

A EERN LRTREF RN ERBEARZ —, B 20 ZEFMINRBIX— L FER
AR S IRFFBIIAE, IX{FR Jacobson it A2 4b. HEEMPE, AL AKGRMAESMLIFHFAR
EBHMaL, FEFERT —FHHNAFLEIR, T Jacobson W&k B Tk F i —A7 45551
THE. MAEAR PP R TFREFFETAEMIBR, +oBET M 1993 F IR 452 XM
(Pattern). 74+, MTWAKFISCHMRARERE, WHERNIERESTREEN THRNERE
ZREEN, BUABPETHE -EREEHHERIR. Lhrt, SHEmERRTETHH
G TEEAR, TAMURAGARER, E5RIMREFEENTEISE X

OOSE — M EERF AR XA RS (Reflection) ARG KBS RE ST KAETT RKITRE,
XAEBERA—MAY . AR R, AT LUEEX I & 4 R0 R S R AR 34 AT AH
MARFBRALALE, DIMBERAMNTFREE. AXABX XA, OOSE NMUEEHH THRIER
ST R, THAESH TR SBENE. IE, KNSR M BEZNES,
EEHRIPES (W UML Hi Java) FIRMAFFRERE (n OOSE) F#REE| TR .

OOSE M—AEE Q&R B (Use case) 5HBIHKS). AGIRKEFRK—FERFE,
RAFF RN B ERIEF FREMNETHEET K. R, AGIXAUR T RWERRFE,

CERETREEFERBTRFENE, XRAGIS, ATNERTREFHERERME T
—FARNZFTFR. REFTRELRRETE, XR2—£FUAME. HTHERNZETLL
B U B0t — 4 A i3858 |, DRI OOSE A BRUB IR LT R DA R At s IT &
BT —AMRLHITRREA . NBRDARNR. TFEAEBELBRE, BHAEITRE
AFB, EEFMER E—-REANMER, MEEHARNEARQMMNATEETRER
RAFNE, WERFESL. LrE, RFHAISE T WA R K0 mE AR A 41 9K 3h
BR, EENSERX— . ,

Jacobson HEFFRKKERHERL. KARENRAANFEELE, ABPoMESHBH
AMUBIERIEE R E LN E, HARIUFALENIT.

RERBATEHANEN (B B TEIEMAESNA TERZEMEERS, g
HARJE R 11 FRFFENERERRE, NHE—HEARENRS¥INEE.

K F
B FRIEKE
2003 FEMpE THL

Foreword

Ivar Jacobson is in my opinion one of the foremost methodologists in
the field of software engineering. I take great pleasure in writing this,
because he is also a close personal friend. He brings a refreshingly
pragmatic point of view to a discipline that often seems be so abstract
and arcane as to be hopelessly remote from the real world of ‘blue
collar’ programmers. His methodology is based on some really
innovative ideas about modeling the software process, presented
within a tried and proven engineering framework. It brings to the
task of analyzing, designing and constructing complex software
intensive products the same disciplined approach that is to be found
in other branches of engineering.

Along with many others I have urged lvar for some time to publish
his methodology in a textbook, so that it would be accessible to a
larger audience. I believe that the concepts in Objectory, the first
comprehensive object-oriented process for developing large scale
industrial systems, are important and should get wider exposure.
This book represents over 20 years of experience building real
software based products and a great deal of serious thinking about
how such systems should be built. If you have any interest at all in
software you will enjoy reading it.

Objectory stands out as being a truly object-oriented methodology,
in which both the process and the methodology are themselves
represented as objects. While some may find this idea of a reflective
or ‘meta’ architecture to be rather exotic, it is in fact intensely
practical and absolutely essential. It makes Objectory an extensible
methodology which can be specialized to both the organization and
the application domains. Simply put, Objectory provides a software
process for building not just software, but also other more specialized
software processes.

Another key innovation in Objectory is the concept of use cases,
which has now been proved effective in a number of real-world
projects. Use cases provide the needed linkage between requirements,

2

Foreword

development, testing and final customer acceptance. This idea, which
originated in Ivar’s work on the AXE switch, has been generalized so
that it can be applied in application domains as diverse as command
and control and business information systems.

Use cases provide a concrete representation of software
requirements, which allows them to be both formally expressed and
systematically tested. Changes in requirements map directly onto
changes in the set of use cases. In this way Objectory provides a solid
methodological foundation for rapid prototyping and other forms of
incremental software development. Objectory enables managers to
move beyond labour intensive hand assembly of software systems,
and allows them to transform their organizations into highly
automated factories to manufacture software from reusable
components.

Many feel that we are in the midst of a software crisis, and I agree.
High-quality software has become one of the most sought after
commodities in the modern world. We just can’t seem to get enough
of it, on time and on budget, to meet the demand. This book will help
you overcome the software crisis in your own organization, by
showing you how to make software construction into a reliable and
predictable engineering activity.

One of the more profound insights offered by modern software
engineering is that change is inevitable, and that software must be
designed to be flexible and adaptable in the face of changing
requirements. Objectory, with its reflective architecture, goes one step
further, and provides an extensible methodology which can itself
adapt to shifts in the business climate or the demands of new
technologies. No static text can ever capture all the nuances of such a
dynamic software entity but this one comes very close. I strongly
recommend it, not only for software managers and designers, but for
anyone who wishes to understand how the next generation of
software systems should be built.

Dave Thomas

Foreword

Ivar Jacobson has taken the time to create a book that is certain to
become essential reading for software developers and their managers.
In this book, Jacobson establishes a new direction for the future of
software engineering practice. It is a thoughtful and thorough
presentation of ideas and techniques that are both solidly proven and,
simultaneously, at the leading edge of software engineering
methodology. Jacobson is simply a thinker who has been ahead of his
time in creating usable methods for building better, more reliable and
more reusable large software systems.

Despite the title, this is not ‘another book on object-oriented
analysis and design’, nor yet another standard reworking on the
word-of-the-week. Once, of course, the word-of-the-week in software
engineering was ‘modular’, later it was ‘structured’, and now, as
every programmer or software enginecer who reads or attends
conferences knows, it is ‘object-oriented.’

When the word-of-the-week was still ‘structured’, and I wrote the
first edition of Structured Design, the very idea of systematic methods
for software development was radical. Software engineering was in
its infancy, and when I introduced data flow diagrams and structure
charts, few recognized either the need for notation or the benefits of
well-conceived modeling tools for analysis and design.

But things have changed. Now, new methodologies are created
over cocktails, and books spin out of word-processors so fast that
revised or ‘corrected’ editions appear almost before the original has
reached the bookstores. Since nearly everyone now recognizes that a
methodology must be supported by a notation, notations proliferate.
A new object-oriented design notation can be churned out over a
weekend so long as the major objective is simply squiggles and icons
with a unique ‘look and feel’, and issues of usability and power in
modeling are considered unimportant.

And here we have yet another notation supporting one more
methodology? Not quite.

It is true that the serious reader will have to surmount both new

3

4

Foreword

terminology and new notation to get to the marrow, but this book is
different. It was not conceived and written overnight. The
methodology it describes has been in use for years to design and
build numerous software systems, and its notation has evolved

~ slowly from both manual and CASE-supported application. It is not

the work of a writer or consultant with a long booklist, but comes
from a practising software engineer and leader in software
engineering who has been doing large-scale object-oriented
development for longer than most people even knew that objects
existed. Throughout this period, the ideas and methods have been
honed by the grindstone of building software and refined by
thoughtful reflection and analysis.

What we have here is an approach to object-oriented analysis and
design that is fundamentally different from most of the highly touted
and more visible methods that clutter the landscape. I believe it is an
approach of proven power and even greater promise.

The real power of this approach rests not only in the wealth of
experience on which it is based but also in the way in which it starts
from a different point of departure and builds an entirely different
perspective on how to organize software into objects. Jacobson does
not build naive object models derived from simplistic
reinterpretations of data modeling and entity object relationship
models. He starts from an entirely different premise and set of
assumptions uniquely tailored to creating robust, sophisticated object
structures that stand the test of time.

His approach centers on an analysis of the ways in which a system
is actually used, on the sequences of interactions that comprise the
operational realities of the software being engineered. Although it
fully incorporates the conceptual constructs, the application and
enterprise entities that undergird our thinking about software
systems, it does not force the entire design into this rigid pattern. The
result is a more robust model of an application, leading to software
that is fundamentally more pliant, more accommodating to
extensions and alterations and to collections of component parts that
are, by design, more reusable.

At the heart of this method is a brilliantly simple notion: the use
case. A use case, as the reader will learn, is a particular form or
pattern or exemplar of usage, a scenario that begins with some user of
the system initiating some transaction or sequence of interrelated
events. By organizing the analysis and design models around user
interaction and actual usage scenarios, the methodology produces
systems that are intrinsically more useable and more adaptable to
changing usage. Equally important, this approach analyzes each use
case into its constituent parts and allocates these systematically to

Foreword 5

software objects in such a way that external behavior and internal
structure and dynamics are kept apart, such that each may be altered
or extended independently of the other. This approach recognizes not
one kind of object, but three, which separate interface behavior from
underlying entity objects and keeps these independent of the control
and coordination of usage scenarios.

Using this approach, it is possible to construct very large and
complex designs through a series of small and largely independent
analyses of distinct use cases. The overall structure of the problem
and its solution emerges, step-by-step and piece-by-piece, from this
localized analysis. In principle ~ and in practice ~ this methodology is
one whose power increases rather than diminishes with the size of
the system being developed.

Use case driven analysis and design is a genuine breakthrough, but
it is also well-grounded in established fundamentals and connected to
proven ideas and traditions in software engineering in general and
object-oriented development in particular. It echoes and extends the
popular model-view—controller paradigm of object-oriented pro-
gramming. It is clearly kin to the event-driven analysis and design
approaches of Page-Jones and Weiss, as well as to the widely
practised event-partitioning methods pioneered by McMenamin and
Palmer. .

On this ground, Ivar Jacobson has built a work that is nothing
short of revolutionary. Rich with specific guidelines and accessible
examples, with completely detailed case studies based on real-world
projects, this book will give developers of object-oriented software
material that they can put into practice immediately. It will also
challenge the reader and, I am confident, enrich the practise of our
profession for years to come.

Larry L. Constantine

Preface

This is a book on industrial system development using object-oriented
techniques. It is not a book on object-oriented programming. We are
convinced that the big benefits of object orientation can be gained only
by the consistent use of object orientation throughout all steps in the
development process. Therefore the emphasis is placed on the other
parts of development such as analysis, design and testing.

You will benefit from this book if you are a system developer
seeking ways to improve in your profession. If you are a student with
no previous experience in development methods, you will learn a
robust framework which you can fill with details as you take part in
future development projects. Since the focus of the text is on
development, the book will be convenient to use in combination with
other texts on object-oriented programming. Many examples
illustrate the practical application of analysis and design techniques.

From this book you will get a thorough understanding of how to
use object orientation as the basic technique throughout the
development process. You will learn the benefits of seamless
integration between the different development steps and how the
basic object-oriented characteristics of class, inheritance and
encapsulation are used in analysis, construction and testing. With this
knowledge you are in a much better position to evaluate and select
the way to develop your next data processing system.

Even though object orientation is the main theme of this book, it is
not a panacea for successful system development. The change from
craftsmanship to industrialization does not come with the change to a
new technique. The change must come on a more fundamental level
which also includes the organization of the complete development
process. Objectory is one example of how this can be done.

This book does not present Objectory. What we present is the
fundamental ideas of Objectory and a simplified version of it. In this
book we call this simplified method OOSE to distinguish it from
Objectory. To use the process in production you will need the complete

Preface 7

and detailed process description which, excluding large examples,
amounts to more than 1200 pages. Introducing the process into an
organization needs careful planning and dedication. It also requires that
the process be adapted to the unique needs of the organization. Such
process adaptations must of course be carefully specified, which can be
done in a development case description, as will later be explained.

It is our hope that we have reached our goal with this book, namely
to present a coherent picture of how to use object-orientation in system
development in a way which will make it accessible both to
practitioners in the field and to students with no previous knowledge
of system development. This has been done within a framework where
system development is treated as an industrial activity and
consequently must obey the same requirements as industry in general.
The intention is to encourage more widespread use of object-oriented
techniques and to inspire more work on improving the ideas
expounded here. We are convinced that using these techniques will
lead to better systems and a more industrial approach to system
development.

Part I: Introduction. The book is divided into three parts. The first
part covers the background, and contains the following chapters:

(1) System development as an industrial process

(2) The system life cycle

(3) What is object-orientation?

(4) Object-oriented system development

(5) Object-oriented programming
This part gives an introduction to system development and
summarizes the requirements of an industrial process. It also
discusses the system life cycle. The idea of object orientation is

introduced, and how it can be used in system development and
during programming is surveyed.

Part II: Concepts. The second part is the core of the book. It
contains the following chapters:

(6) Architecture

(7) Analysis

(8) Construction

(9) Real-time specialization

(10) Database specialization

(11) Components

(12) Testing

8

Preface

The first chapter in this part introduces the fundamental concepts of
OOSE and explains the reason why these concepts are chosen. The
following chapter discuss the method of analysis and construction.
The next two chapters discuss how the method may be adapted to
real-time systems and database management systems. The
components chapter discusses what components are and how they
can be used in the development process. Testing activities are
discussed in a chapter of their own.

Part ITI: Applications. The third and last part covers applications of
OOSE and how the introduction of a new development process may
be organized and managed. This part ends with an overview of other
object-oriented methods. This part comprises:

(13) Case study: warehouse management system
(14) Case study: Telecom

(15) Managing object-oriented software engineering
(16) Other object-oriented methods

Appendix. Finally we have an appendix which comments on our
development of Objectory.

So, how should you read this book? Of course, to get a complete
overview, the whole book should be read, including the appendix.
But if you want to read only selected chapters the reading cases
below could be used.

If you are an experienced object-oriented software engineer, you
should be familiar with the basics. You could read the book as
suggested in Figure P.1.

add to see
process
de ve lopment
issues
6,7,8,13,14

Preface 9

industrial
perspective

add to get
survey on
methods

Newcomer to add o see
00 and SE programming

If you are a newcomer to object-orientation and software
engineering you could read the book as in Figure P.2.

If you are an experienced software engineer you could read the
book as in Figure P.3.

If you are a manager you could read the book as proposed in
Figure P 4.

Although the book is not object-oriented, it is written in a
modularized way and can be configured in several different ways.
Building systems in this way is the theme of the book, and the
technique and notation used above is very similar to the technique
used in this book.

real-time
{ssues are
interesting

1 .2:304’5|6t7.8.1 1 .1 2, 1 3.1 4.1 6

interesting

read

Experienced 4
);%eﬂware add to ggt
engineer manager view

-

Figure P.3

10

Preface

examples

1.2,3,4,6,7,8,12,15

Manager add to get
survey on OO
methods

read

add to see
development process
issues

Figure P.4

A short history and acknowledgements

The work presented in this book was initiated in 1967 when I
proposed a set of new modeling concepts (notation with associated
semantics) for the development of large telecommunication switching
systems. The main concepts were signals and blocks. A real-time
system is an open system communicating with its environment by
signals alone. A signal models the physical stimulus/response
communication which a concrete system has when interacting with
the outside world. Given a signal as input, a system performs internal
actions such as executing algorithms, accessing internal information,
storing results and sending output signals to the environment. This
view presents the system in a very abstract way - as a black box. A
less abstract view on a lower level models the system as a set of
interconnected blocks. Blocks are modules which can be implemented
in hardware or software or any combination of both. A block
communicates with its environment only through signals. Signals
between two blocks are internal, whereas signals modeling physical
communication, that is, signals between a block and the environment
of the system, are external. Internal signals are messengers conveying
data from one block to another within the same system. All entries of
a block were labelled and constituted the signal interface of that
block, to be specified in a separate interface document. Hence the
system can now be viewed as a set of interconnected blocks jointly
offering the functions of the system. Each block has a program which
it obeys on receipt of an input signal, performing internal actions, that
is, executing algorithms, storing and accessing block internal
information, and sending internal and external signals to the
environment.

Preface 11

The proposal can be summarized as an attempt to unify long
experience of systems design with the possibilities offered by
dramatically new computer technology. Since the two technologies
were so different, this was not a self-evident method, neither within
Ericsson nor within computer science. There was a rather strong
belief that the two represented unrelated technological universes:
the new one was so different that it would be meaningless and only
a burden to make any attempt to learn from the old one. However,
the two techniques were joined and a set of modeling concepts
evolved.

The modeling constructs were soon followed by the skeleton of a
new design method, the use of which was first demonstrated in the
development of the AKE system put into service in Rotterdam in
1971, and more completely demonstrated in the AKE system put into
service in Fredhall, Sweden, in 1974. Naturally this experience has
guided subsequent work on the development of the successor to
AKE, the AXE system, which is now in use in more than 80 countries
worldwide. The modeling constructs were very important and, for
the AXE gystem, a new programming language and a new computer
system were developed in accordance with these early ideas.

Although it is a neighbouring country, the early development of
object-oriented programming and Simula in the 1960s in Norway was
done independently and in parallel with our work. It was not until
1979 that we ‘discovered’ object-oriented programming and then it
was in terms of Smalltalk. Although object-oriented ideas have
influenced our recent work, basically two separate problems are
being solved: ‘large-scale’ and ‘small-scale’.

The modeling constructs introduced during the 1960s were
further formalized in research taking place between 1978 and 1985.
This research resulted in a formally described language which offered
support for object-orientation with two types of object and two types
of communication mechanism, send/wait and send/no-wait
semantics. The language supported concurrency with atomic
transactions and a special semantic construction for the handling of
events similar to the use case construct presented later. This work,
reported in a PhD thesis in 1985, resulted in a number of new
language constructs, initially developed from experience, being
refined and formalized. This was a sound basis from which to
- continue and, taking a new approach, develop the method. The
principles of Objectory were developed in 1985-7. I then further
refined and simplified the ideas, generalized the technique used in
the telecom applications, extended it with the inheritance concept and
other important constructs like extensions, and coupled to it an
analysis technique and object-oriented programming.

