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PREFACE

This book presents some of the proceedings of the conference on Algebraic Geometry held
at Sundance, in July 1986, in the mountains near Provo, Utah. Financial support, from the
National Science Foundation (grant 86 — 01409) and from Brigham Young University, is gratefully
acknowledged. Normally, a proceedings volume collects writups of lecures given at the conference,
based on work done earlier, and the present volume, indeed, includes a number of these. We are
very pleased, however, that the bulk of this volume presents research begun or carried out right
at Sundance. Some of this new work may not have been done at all, had the conference not
brought together the individuals involved. Beautiful surroundings, ample and contiguous spaces
for lectures and discussions, meals served right beside the working areas: all contributed to an
atmosphere unusually conducive to new work. But the major responsibility for the success of the
conference lay, we feel, with the participants. Their enthusiasm, their interests, their eagerness,
are reflected in the papers which follow. It is a pleasure to thank them here.

Audun Holme Robert Speiser
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The characteristic numbers of smooth plane cubics

PAOLO ALUFFI

Brown University

March 1987

Abstract. The characteristic numbers for the family of smooth plane cubics are computed, verifying
results of Maillard and Zeuthen

81 Introduction. The last few years have witnessed a revived interest in the search for the
‘characteristic numbers’ of families, i.e. the numbers of elements in a family which are tangent to
assortments of linear subspaces in general position in the ambient projective space. By the ‘contact
Theorem’ of Fulton-Kleiman-MacPherson, these numbers determine the numbers of varieties in
the family that satisfy tangency conditions to arbitrary configurations of projective varieties: this
justifies the central role of the computation of the characteristic numbers in the field of enumerative
geometry.

The problem received much attention in the last century, when in fact it contributed significantly
to the development of algebraic geometry. Schubert’s “Kalkil der abzihlenden Geormnetrie” ([S]),
published in 1879, is a compendium of the results obtained in a span of some decades by Schubert
himself, Chasles, Halphen, Zeuthen and others. The validity of these achievements was soon
questioned: in requesting rigorous foundations for algebraic geometry, Hilbert’s 15th problem
(1900) explicitly asked for a justification of the results in Schubert’s book. Algebraic geometry
found its foundations in the fifties; the challenge of justifying enumerative geometry had to wait
somewhat longer to be accepted.

By now, most of the results in the “Kalkil der apzinlenden Geometrie” have been verified
or corrected, but the enterprise is not yet completed. While rich satisfactory theories are now
available for quadrics (Van der Waerden, Vainsencher, Demazure, De Concini-Procesi, Laksov,
Thorup-IKleiman, Tyrell, etc.) and triangles (Collino-Fulton, Roberts-Speiser), and much is known
about twisted cubics (Kleiman-Strgmme-Xambd), the families of plane curves still offer results
which were ‘known’ in the last century and cannot be claimed such now.

The achievements of the classic school are here quite impressive. By 1864 Chasles (and others)
had settled conics; already in 1871 a student of his, M.S. Maillard, computed in his thesis ([M])
the characteristic numbers for many families of plane cubic curves, including cuspidal, nodal, and
smooth ones. One year later H.G. Zeuthen published a series of three amazingly short papers
([Z1]) again computing the numbers for cuspidal, nodal and smooth cubics; his results agree
with Maillard’s. Zeuthen finally published in 1873 a long analysis for plane curves of any degree
([Z2]), giving as an application the computation of the characteristic numbers for families of plane
quartics. Apparently, noone ever tried to explicitly work out higher degree cases.

The problem for cubics or higher degree curves remained untouched - and therefore eventually
unsettled- for at least one century. Then Sacchiero (1984) and Kleiman-Speiser (1985) verified
Zeuthen and Maillard’s results for cuspidal and nodal plane cubics. Kleiman and Speiser’s ap-
proach replicates and advances Zeuthen and Maillard’s, so it is expected to lead eventually to the

verification of the numbers for the family of smooth cubics; but that program is not completed



yet. Also, Sterz (1983) constructed a variety of ‘complete cubics’, by a sequence of 5 blow-ups
over the IP° of plane cubics, giving some intersection relations ([St]).

Later, I independently constructed the same variety, by the same sequence of blow-ups. My
approach was in a sense more ‘geometric’ than Sterz’s, and I was able to use this variety to actually
compute the characteristic numbers for the family of smooth plane cubics. The result once more
agrees with Zeuthen and Maillard’s.

There is an important difference between this approach and the classical one. Maillard and
Zeuthen were computing the numbers by relating them to characteristic numbers of other more
special families (c.g. cuspidal and nodal cubics); here, one aims directly to solving the specific
problem for smooth cubics, and other families don’t enter into play. This makes the problem more
accessible in a sense, but it may on the other hand sacrifice the ‘general picture’ to the specific
result.

In this note I describe the blow-up construction and the computation of the numbers. Full
details appear, together with partial results for curves of higher degree, in my Ph.D. thesis ([A)]),

written at Brown under the supervision of W. Fulton.

Aknowledgements. I wish to thank A. Collino and W. Fulton for suggesting the problem, and

for constant guidance and encouragement.

§2 The problem and the approach. Let n,,ng be integers, with ny, +ne = 9. The question
to be answered is:

How many smooth plane cubics contain n, points and are tangent to ne lines in general position?

The set of smooth plane cubics is given a structure of variety by identifying it with an open
subvariety U of the IP° parametrizing all plane cubics. The conditions ‘containing a point’ and
‘tangent to a line’ determine divisors in U; call them ‘point-conditions’ and ‘line-conditions’ respec-
tively. The question then translates into one of cardinality of intersection of n, point-conditions
and ny line-conditions in U.

One verifies that for general choice of points and lines the conditions intersect transversally in
U, so that actually the cardinality of the intersection can be computed as intersection number of
the divisors.

The first impulse is of course to work in the P? that compactifies U: closing the conditions
to divisors of IP? (one obtains hyperplanes from point-conditions, hypersurfaces of degree 4 from
line-conditions), and using Bézout’s Theorem to compute the intersection numbers. This works if
np > 5: in this case the intersection of the divisors in P? is in fact contained in U, and the result
given by Bézout’s Theorem is correct. If n, < 4, non-reduced cubics appear in the intersection
of the divisors in P?, since a curve containing a multiple component is ‘tangent’ to any line and
clearly one can always find non-reduced cubics containing any 4 or less given points.

The conclusion is that IP is not the ‘right’ compactification of the variety U of smooth cubics
for this problem, because all line-conditions in IP° contain the locus of non-reduced cubics.

The intersection of all line-conditions is in fact a subscheme of TP® supported over the locus of
non-reduced cubics. If we could blow-up IP® along this subscheme, this would provide us with
a compactification of U in which the proper transforms of the point- and line-conditions don’t
intersect outside U, and taking their intersection product would answer the original question. But
performing such a task requires much non-trivial information about the subscheme, and we are

not able to proceed directly.



What we can perform without losing control of the situation is the blow-up of IP? along a certain
smooth subvariety of the locus of non-reduced cubics. The blow-up creates another compactifica-
tion of U, in which one can again find the support of the intersection of the ‘line-conditions’ (i.e., of
the closure of the line-conditions of U). Again, a smooth subvariety -in fact, a component- of this
locus can be chosen as a center of a new blow-up, creating a new compactification. The process
can be repeated, under the heuristic principle that at each step, blowing-up the ‘largest’ possi-
ble non-singular subvariety/component of the intersection of all line-conditions should somehow
simplify the situation.

In fact, 5 blow-ups do the job in this case: a non-singular compactification of U is produced
in which 9 conditions intersect only inside U. The knowledge of the Chern classes of the normal
bundles of the centers of the blow-ups is then the essential ingredient needed to compute the
intersections and obtain the characteristic numbers. An intersection formula (see §4) that explicitly
relates intersections under blow-ups can be used to reach the result.

Apparently, this step (the computation of the Chern classes of the normal bundles and their
utilization to get the characteristic numbers) is the only one missing in Sterz’s work.

Alternatively, one can use the same information to compute the Segre class of the scheme-
theoretic intersection of all line-conditions in IP?, and apply Fulton’s intersection formula ([F,
Proposition 9.1.1]). This Segre class has interesting symmetries, which may shed some light on

the internal structure of this scheme.
§3 The blow-ups. In this section I will briefly describe the varieties obtained via the 5 blow-ups.
Details are provided in [A, Chapter 2].

The diagram

— S
=
Il
s
L)

Vi e—— By=S; e BlaP’xD’

! l

B, —— W e & — B P x P
IPa—bundle.J' J' l

B — s Vi e—— 5 ——— Bl xP°
- | | |

1)3(]?2) =By — > P'=V, ————— S§=85, «—— P’ x P’
contains most of the notations that will be explained in this section.

Sy is the locus of non-reduced cubics, By = 1»3(]i’2) <« IPY is the Veronese of triple lines. B; will
be the centers of the blow-ups, V; will be the blow-up Bfg, ,V;_; of V;_; along B;_, S; will be
the proper transforms of S;_; under the i-th blow-up.

L is a certain sub-line bundle of the normal bundle Ng, V3 of By in V3. A is the diagonal in
2 2

P x P



Also, E; will be the exceptional divisor of the i-th blow-up, and ‘line-conditions in V;’ will be the
closure in V; of the line-conditions of U: i.e., the line-conditions in V; will be the proper transforms
of the line-conditions in V;_j.

For each blow-up I will describe the intersection of all line-conditions and indicate the choice
of the center of the next blow-up. The basic strategy is to blow-up along the ‘largest possible’
non-singular subvariety/component of the intersection of all line-conditions. In fact, the first three

blow-ups desingularize the support of this intersection, the last two separate the conditions.

£3.0 The IP° of plane cubics. We noticed already that the intersection of all line-conditions in
P is supported on the locus Sy of non-reduced cubics. This locus is the image of a map

L .2 ¢
P’ <P’ 5P

sending the pair of lines (A, i) to the cubic consisting of the line A and of a double line supported
on ft.

The map P’ x P* i Sy is an isomorphism off the diagonal A in P’ x ]P2; therefore Sy is
non-singular off the (smooth) locus By = ¢(A) of triple lines. In fact Sy is singular along By.

By is the center of the first blow-up.

3.1 The first blow-up. Let V; be the blow-up of P along By, E; the exceptional divisor, S
the proper transform of Sg.

S, is isomorphic to the blow-up Bla P’ x P* of P* x P along the diagonal (call e the excep-
tional divisor of this blow-up); in particular, it is non-singular.

The line-conditions in V; intersect along the smooth 4-dimensional S, and along a smooth
4-dimensional subvariety of E;.

To see this, notice that the line-condition in IP? corresponding to a line ¢ has multiplicity 2 along
By, and tangent cone at a triple line A* supported on the hyperplane of cubics containing A N ¢.
Thus, the tangent cones at A* to all line-conditions in IP? intersect along the 5-dimensional space
of cubics containing A. It follows that the normal cones to By in the line-conditions intersect in
a rank-3 vector subbundle of N, IP, and correspondingly that the line-conditions in ¥} intersect
also along a IP2-bundle over By contained in E.

Call this subvariety By, and choose it as the center for the next blow-up. B; intersects S; =

B@AIPZ x P along the exceptional divisor e.

3.2 The second blow-up. Let V; be the blow-up of Vi along By, E, the exceptional divisor,
E,, S, the proper transforms of Ey,S; respectively.

S, is the blow-up of S) along a divisor, thus it is isomorphic to S; and hence to BfAﬂ)z X ]Pz.

A coordinate computation shows that the line-conditions in Vi are generically smooth along
By, and tangent to E;. As a consequence, their proper transforms intersect in E, along El N E,,
which is a IP*-bundle over B; contained in E,.

Therefore the line-conditions in V; intersect along the smooth 4-dimensional S; and along a
smooth 7-dimensional subvariety of E,.

Choose this subvariety as the new center, call it B;.

§3.3 The third blow-up. Let V3 be the blow-up of V; along By, E3 the exceptional divisor, S3

the proper transform of S;.



Again, S is isomorphic to B€A1P2 x P%.

E; is a IP'-bundle over B;. In each fiber of this bundle there are two distinguished distinct
points 71,72: namely the intersections with the proper transforms of El and E,. Now, over any
point in By away from S3 N Es, one can find line-conditions that hit the fiber precisely at ry or
precisely at . This implies that over such points the line-conditions in V3 cannot intersect.

Thus the line-conditions in V3 intersect only along the smooth 4-dimensional Ss.

This completes the ‘desingularization of the support’ of the intersection of all line-conditions,

and we are ready to choose B3 = S3 as the next center.

3.4 The fourth blow-up. Let V; be the blow-up of V3 along Bs, E4 the exceptional divisor.

The line-conditions in V4 meet along a subvariety of the exceptional divisor E4 = IP(Np,V3).
Notice that above By — E3 & Sy — By, E4 restricts to IP(Ng,— g, IP?). Now, the tangent hyperplanes
to the line-conditions in IP? at a non-reduced cubic Au? € Sy — By intersect in the 5-dimensional
space of cubics containing p. It follows that the line-conditions in V; meet above B; — E3 along
the projectivization of a line-subbundle of IP(Np,_g,V3). This fact holds on the whole of By: the
line-conditions in Vj intersect along a smooth 4-dimensional subvariety of E4 = IP(Np,V3), which
is the projectivization IP(L) of a line-subbundle of N, V3.

Choose IP(L) to be the next center By.

§3.5 The fifth blow-up. Let V5 be the blow-up of Vy along By, Es the exceptional divisor, E,
the proper transform of Ej.

Finally, the intersection of all line-conditions is empty in V5.

The verification of this fact is similar to the one in 3.3. Here, each fiber of E5 over a point of
B, is a 4-dimensional projective space; in this IP* lies a distinguished IP?, namely the intersection
of the fiber with E4. Now, one can produce line-conditions whose intersection is disjoint from this
IP?, and a line-condition which intersects the fiber precisely along this IP?. Thus the intersection

of the line-conditions must be empty.

Vs is the compactification of U we were looking for.
By slightly refining the arguments, one sees that the intersection of 9 point/line-conditions in
general position in V5 must be contained in U. The characteristic numbers are then the intersection

numbers of the conditions in V5, and one can proceed with the actual computation.

§4 The numbers. The essential ingredients to obtain the characteristic numbers from the con-
struction in §3 are the Chern classes of the normal bundles of the centers of the blow-ups. In fact
this information would be enough to determine the whole Chow ring of the blow-ups; but we don’t
need that much. We have 9 divisors in IP?, and we wish to compute the intersection numbers of
their proper transforms in some blow-up of P, once the Chern classes of the normal bundles of
the centers are known.

This task can be accomplished directly, by repeatedly applying the

5 . . . 1 ¥ .
PROPOSITION. Let V' be a non-singular n-dimensional variety, B < V a non-singular closed
subvariety of V, X1,..., X, divisors on V. Let V = B{gV, and X,,... X, the proper transforms

of X1,...Xn. Moreover, let e; = egX; be the multiplicity of X; along B. Then

s = [ v v [ (aBl+X]) - (ealB) + [ Xa])
/le""X"_/v‘\l o [g (NgV) ‘




This specializes to well-known formulas when B is a point, and is itself a specialization of a
more general relation among Segre classes (see [A, Chapter 1]). An elementary proof of the form

stated here can be obtained by expanding
[ % Xu= [+ ealE)- (Rl + eal)

(E is the exceptional divisor) and recalling that Zizo[E]i pushes forward to ¢( NgV)~! by Corol-
lary 4.2 and Proposition 4.1(a) in [F].

What we need to compute the intersection numbers of the conditions in Vs is then, for each V;:

(1) The Chern classes of Np, V;;

(2) The multiplicities of the conditions in V; along B;;

(3) The Chow ring of B;.

We will now indicate how this information can be obtained.

As for the multiplicities, they are obtained along the construction: the line-conditions in IP° have
multiplicity 2 along the locus By of triple lines, while line-conditions in V;, ¢ > 0, are generically
smooth (hence have multiplicity 1) along B;. Also, point-conditions never contain B;, so their
multiplicities along the centers are always 0.

The Chow rings and the normal bundles of the centers can be obtained as follows.

B, is the locus of cubics consisting of ‘triple lines’, hence it is isomorphic to P?; call h the

Liyperplane class in By. In fact By is the third Veronese imbedding of P? in IP?: it follows that

(14 3h)10

B, is a IP*-bundle over By, thus its Chow ring is generated by the pull-back h of h from By
and the class € of the universal line bundle Op, (—1). A closer analysis of the situation (see §3.1)
reveals that B is actually isomorphic to the projectivization of the normal bundle to the locus
of double lines in the IP® of conics. This determines the relations between h and €, and gives
substantial information about the imbedding By — E;. Np, Vi is an extension of Np, E; and

Ng, Vi, and one obtaines
(14 3h — €)1
; i)y=(1 -_—
¢o(Np, Vi) =(1+¢) (1+2h —€)

B, is a IP>-bundle over By: its Chow ring is generated by the pull-backs h, € of h, € from B; and
by the class ¢ of Opg,(—1). Recall from 3.2 that B, = El N Es: i.e., By is the exceptional divisor
in the blow-up of E; along B, and hence it is isomorphic to IP(Np, E,). This observation gives

relation among h, €, . Also, By = E\NE, gives at once
o(Np,Va) = (1 +¢)(1 +e—¢).

B3 = S is isomorphic to the blow-up BCAIP2 x P* of P* x * along the diagonal. Its Chow
ring is then generated by the pull-backs ¢,m of the hyperplanes from the factors, and by the

exceptional divisor e. One obtaines the relations

/ ?m? =1, / e2? = —1, / e2m? = -1,
JBs Ba JBs

/ A= -3, / em = —3, / et = —6.

J Bg J By By



The total Chern class of Ng,V3 can be obtained as fg—%}%: both ¢(TV3) and ¢(TBs) can be
computed using the formula for Chern classes of blow-ups (Theorem 15.4 in [F]). The result is

«(Np,Vs) =14 704 1Tm — 16¢ + 126m? + 990m + 21¢* — 315ef + 105¢* + 582¢m”
+2370%m — 2517el? 4 1611e%L — 358¢® + 10260*m? + 9174e% (% — 3912¢*¢ + 652¢™.

Finally, By = IP(£) is also isomorphic to BKAIP2 X ]Pz; the Chern classes of Ng,V, are easily

obtained from ¢;(£), which can be computed directly as 3( 4 3m — 4e. One gets

co(Np,Va) =1—-50+5m+ 18m? — 270m + 3% + 21el — Te? — 300m? + 750*m
—225¢0% + 135¢20 — 30¢” 4 T50%m?.

Once this information is obtained, 5 applications of the proposition for each number n,, of points
and ng of lines give the corresponding characteristic number. For example, the reader may now

cujoy checking by hand that

numbers of smooth cubics through 4 points and tangent to 5 lines =

=4>—-0—-0—-0—24— 24 = 976,
or that

numbers of smooth cubics through 3 points and tangent to 6 lines =
=4"—-0-0-0—390 — 282 = 3424.
The final result is the list
1 ny,=9ng=0
4 ny =8,neg=1
16 np=Tne=2
64 np=6,n¢=3
256 ny, =95,ng =4
976 n,=4,n¢g=>5
3424 np=3,n¢g=6
9766 np=2,ng="7
21004 np=1ng=38
33616 n,=0,n¢=9
for the number of curves containing n, points and tangent to n lines, agreeing with Maillard and

Zeuthen.

55 Concluding remarks. It seems plausible that the same procedure worked out here for cubics
could in principle be executed to get the characteristic numbers for smooth quartics or for higher
degree plane curves, but the usefulness of such an endeavor is questionable at this point. Until
these ‘blow-up constructions’ are part of a general theory, the complication of the technical details
is bound to keep the work at the level of brute force computation. Part of the construction (essen-

tially the last two blow-ups) can in fact be carried out, giving the first ‘non-trivial” characteristic



number for smooth plane curves of any degree (see [A, Chapter 3]), but this seems to be in some
sense a special case. The next ‘non-trivial’ number can still be computed for quartics (the results
agree with Zeuthen’s!), but not via a straightforward generalization from the computation for
cubics ([A, Chapter 4]).

Perhaps Kleiman and Speiser’s approach, pointing in the direction of Zeuthen’s monumental

‘general theory’, will strike more deeply into the heart of the problem.
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MULTIPLE-POINT FORMULAS AND LINE COMPLEXES

Susan Jane Colley

Department of Mathematics
Oberlin College
Oberlin, Ohio 44074 U.S.A.

0. Introduction

Suppose f: X » Y is a map of schemes. An r-fold point of f is a point
X4 of X such that there exist xg.....X, € X with f(xl) = f(x2) =
= f(xr). Call X, a strict (or ordinary) r-fold point if all of the xi's are

1 a stationary r-fold point if any of the xi's have

coalesced to become ramification points of f. (We shall say that such points lie

distinct and call X

"infinitely near" each other. See 1.7 below.) Modern multiple-point theory in
algebraic geometry concerns the determination of the various loci of these
singularities and the development of enumerative formulas for the intersection
classes of them.

We will not attempt to give a complete recent history of the subject, but
instead mention only a few of the principal figures and ideas. Contemporary
multiple-point theory began with Laksov [L], who revived and refined the
double—point formula of Todd. Further refinements were made by both Fulton and
Laksov [F-L]. A general treatment of ordinary higher-order theory and the
so-called "method of iteration” was initiated by Kleiman in [K1] and [K2].
Alternative approaches to multiple-point theory and applications thereof, using
the Hilbert scheme, have also been developed, principally by Kleiman [K3] and
Le Barz [LB1], [LB2]. Roberts, in the context of the iteration method, began some
of the work on stationary multiple-points [Ro]. Most recently, Ran [Ra] has taken
a new approach towards iteration to give, in the smooth case, a treatment of both
ordinary and stationary multiple-point formulas which are valid under sub-—

stantially weaker hypotheses than those given by Kleiman. However, Ran does not

give any mechanical procedures for generating formulas in A.(X). It is important

to note that none of the techniques mentioned above yields a satisfactory general

treatment of multiple-points of maps which have §2—singularities.

A wide variety of enumerative problems may be tackled by casting the problems
in terms of the determination of appropriate multiple-point singularities of
suitable maps. Let us cite some examples. One can recover Clebsch's formula
5 = 1/2(d-1)(d-2) - g for the number & of nodes of a plane curve of degree d

and genus g having only nodes for singularities from the double-point formula
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applied to the normalization map of the curve. The Riemann-Hurwitz formula is
nothing more than a special case of a general stationary double-point formula (see

the formula for n(2) in §3). Finally, other formulas, both classical and new,

for lines having prescribed contact with varieties in P may also be deduced
(see [C1], [LB1]. [LB2]).

This article consists of a sketch of an adaptation of Kleiman’'s iteration
method in [K2] to generate stationary multiple-point formulas, and also a sketch
of a new application of the theory to the problem of computing certain coincidence
formulas for line complexes (see [Sch], §36). We outline the major steps: de-
tailed proofs of the results in 881-3 appear in [C2]. The general set-up, the
necessary notation, and the definition of the stationary multiple-point classes

are given in 81. In 52 we describe how these classes should be interpreted and

under what conditions the resulting formulas are valid. 83 consists of the

formulas themselves and a description of the main ingredients of the computations.
Finally, in 84 we give an outline of the applicationof stationary multiple-point
formulas to the line complex problem.

The author would like to thank Robert Speiser for arranging a magnificent
conference at Sundance and both Audun Holme and Robert Speiser for ensuring that
the mathematics described here received timely attention. Thanks should also go

to Linda Miller of Oberlin College for her careful preparation of this manuscript.

1. Set-Up and Notation (see [K2], §4 and [C2], §81-2)

Let f: X = Y be a separated map of schemes. Consider the following

inductive construction: set XO:= Y. X1:= X, f01= f and, for r > 1, define

new spaces Xr+1 and maps fr: Xr+1 - Xr from the diagram below.

J
. r+l I ¢
X 1= P(Ir) h_______JEr+1__ P (Ar)

r+
3 (1.1)
Py
X e——X x X e———————OA , ideal sheaf I
G r Xr-l r r r
fr—l ] o Py
X —X ._
r-1 fr—l T fr._ PyP-
This construction defines Xr+1 as the residual scheme of the diagonal Ar in
erx Xr. Note that when Ar is regularly embedded in the fibred product (as

r-1
happens, for example, if f 1is a smooth morphism), then Xr+1 is the same as the
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blowup of the diagonal in the fibred product ([K2], 2.2, p. 28). The exceptional

set E equals P(I /12) and has O (1) for ideal sheaf. However, E
T+l r'r Xr+1

need not, in general, be a divisor in Xr+1‘

r+1

For r > 1 define the switch involution i _: X - X to be the natural
T r+1 r+1

covering of the self-map on erX Xr that reverses coordinates. Then ir has
r-1
the following properties:

i | E ,, =1id (1.2)
»*
ir OX (1) = OX (1), (1.3)
T+l r+l1
frir = PP in (1.1). (1.4)

if f 1is proper, Y noetherian, then for r 2 2, s 21

is*(fs+1 T fr+s—1)*[xr+s] = (fs+1 ""fr+s—1)*[xr+s]' (1.5)
(Note that f proper implies that fs is, too, for s > 1.)

The scheme Xr may be seen to parametrize ordered r—tuples of points in the
fibres of f, including those points which lie "infinitely near" one another. In
order to identify r-tuples of points in particular infinitely near configurations,

we need the following.

Definition 1.6. Let a = (a1 ..... ak) be a nondecreasing partition of r.
k
Set b = 2 a. and define T_C X by
s C a r
(=s

. =1 -1,.-1 -1 -1.~-1
TS ¢ I By WL ¢ R AR p iy ¢ S, M Qe S T
a r-1vr b2+1 b2+2 b2 b2 1 b2 b3+1 b3+2 b3
-1 . -1 S|
fak (fak_lJak) o (f1dy) (X))

. -1 -1
Note that if a = (1,1,...,1), then TE = fr—l"'fl (X) = Xr'
Definition/Proposition 1.7 ([c2]. 2.3)- A geometric point of
Néf: flil"’fr—llr—l(Tg) is a point x € X such that there exist r - 1 other

points of the fibre through x and also such that
a; of the points (including x itself) are infinitely near each other,

a. of the remaining r - a, points are infinitely near each other,

2 1



