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Preface

Polymers are ubiquitous and essential. Biological polymers are of unparelleled
importance as constituents of our bodies and of the food we eat. Wood was
certainly one of the first engineering materials, and its use is still widespread.
Synthetic polymers—the subject of this book—enter virtually every aspect
of our lives; most of the objects that surround us are, if not entirely, at least
partially polymeric in constitution.

In spite of our longstanding dependence on polymers, their intensive
study as a class of materials distinct from their low molecular weight counter-
parts is a recent phenomenon. One can fix the birth of modern polymer
science in the 1920’s with the pioneering work of Hermann Staudinger. In
dilute solution, polymers exhibit properties analogous to suspended colloids.
For this reason it was first thought that they were colloid-like aggregates of
low molecular weight materials bound together by physical forces. Staudinger
showed that polymers were actually giant molecules comprised of low molecu-
lar weight materials bound together by chemical bonds rather than physical
forces. For the championship of this viewpoint, as well as other elements of
his work, he was awarded the Nobel Prize in 1953.

Polymer science and engineering is a rapidly advancing discipline. The
development of nylon in the 1930’s and of synthetic rubber during World
War II marked the beginning of polymers as important commodities. The
polymer industry has grown at nearly four times the annual growth rate of
the national economy. Today, thousands of polymer products are manu-
factured, and over 50 % of all chemists and chemical engineers are associated
with the polymer industry. Finally, when the American Institute of Chemical
Engineers posed the question to a panel of chemical engineering authorities:
“What are chemical engineers’ ten biggest all-time feats ?”; three of the
choices were: establishment of the plastics, synthetic fiber, and synthetic
rubber industries.*

Polymers are complex materials that exhibit correspondingly complex
behavioral patterns. These complexities are reflected in the aura of excitement

* Chemical Engineering — December 4, 1967, page 81.
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surrounding their study. Many aspects of polymer behavior are centers of
considerable debate, and numerous fundamental problems remain to be
solved. Nevertheless, there is an underlying body of knowledge that is on a
firm basis and that forms the cornerstone of current thought and research.
Although many fine texts discuss specific areas of technology or research,
or summarize the state-of-the-art, none serve, in any satisfactory way, to
bridge the gap between the fundamentals of nonmacromolecular disciplines
and the underlying concepts of polymer science and engineering. My primary
objective has been to bridge this gap. A firm grasp of the principles herein
developed will enable the student to read this advanced literature and to
establish his own position in this exciting discipline.

Emphasis is placed on discussing general classes of polymers and their
general patterns of behavior. Specific polymers are referred to in citing
examples, but the stress is always on the underlying concepts. In selecting and
organizing the subject matter, I have been careful to balance scope and depth
so as to foster interest and maintain readability. In order to add perspective
and a unifying theme, I have taken the viewpoint of the polymer engineer;
that is, I have stressed the relation of composition and structure to a polymer’s
physical and mechanical properties as well as the relevance of the synthesis
process to the design of a desired polymer product.

The text centers on a discussion of synthetic organic polymers. It is most
suitable for physical chemists, chemical engineers, and materials engineers at
the senior or first or second year graduate school level. It is hoped that the
subject matter will prove valuable and stimulating to the practicing scientist
and engineer as well.

The book has been developed over a six year period through the use of
class notes, with presentation to both undergraduate and graduate chemical
engineers. There is ample material for a two-semester program. Problem and
discussion sets have been included. References are cited in an appended
bibliography. The book is divided into four parts: I Introduction, II Poly-
mer Synthesis, III Physics of the Solid State, and IV Polymer Rheology.
The nature of the subject matter contained within the four parts is discussed
in an introduction preceding each part. Part I is must reading, but the others
may be read independently as individual needs and interests dictate. Cross
references are supplied where appropriate.

In an undertaking of this sort it is impossible to acknowledge all of one’s
debts. Nonetheless, special thanks are due to Professor Alois X. Schmidt for
his guidance and inspiration during my early years at The City College; to
the DuPont Company for their financial support during the summers of 1965
and 1966; to Michael Grancio and David Blum who made contributions to
the material for the manuscript; and to Mrs. Norma Cohen who typed the
bulk of the manuscript.

David J. Williams
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Introductory
Definitions
and Conceptis

High polymers are large molecules, with molecular weights on the order of
10* to 10°. They may be synthetic or natural in origin. Polymeric materials
are among the most common of all materials. They include such useful and
essential materials as the films that package the foods we eat, the fibers that
make up the clothes we wear, the rubber that goes into all our truck and
auto tires, and the plastic that makes so many of the articles we use in our
daily living. Polymeric materials also find their way into more exotic appli-
cations, such as in medicine and space. Indeed, our own bodies and the food
we eat are largely composed of high polymers.

101 The Nature of High Polymers

These high-polymer molecules are built up by the repetitive chemical linking
of small, simple units into long, chainlike structures much as a chain is con-
structed of links. Thus polyethylene, one of the simplest high-polymer
molecules, is composed of many —CH,—CH,— units linked together by
covalent bonding. The word polymer is derived from the Greek and means
“many parts.” The starting materials from which polymers are derived are
known as monomers. For example, polyethylene is derived from ethylene.

3



4 Introductory Definitions and Concepts Chap. 1

The units that are repeated throughout the polymer chain and that
characterize the chemical composition of the polymer age known as repeat
units. The repeat unit is generally composed of one or two monomer units and
is well defined for simple polymer systems. A few examples of such systems
are given in Table 1-1. Rules of polymer nomenclature are discussed in
Appendix A. In polystyrene, the repeat unit is composed of one monomer
unit and the chemical compositions are nearly identical. On the other hand,
the repeat unit in poly(hexamethylene adipamide) is composed of two mono-
mer units and the compositions differ by two molecules of water.

TaBLE 1-1

EXAMPLES OF SOME SIMPLE POLYMER MATERIALS

Polymer Repeat Unit Monomer Unit(s)
Polyethylene —CH,—CH,— CH,—CH;
Polystyrene —CHZ—(IJH— CszCllH
Polyisoprene —CH;—C=CH—CH,— CH,;—=C—CH=CH;

CH; éH:
Poly(hexamethylene —NH(CH3)¢—NH—C—(CH;);—C— NH,—(CH3)e—NH>
adipamide) y) (”) HOOC—(SI?E)A;—COOH
i [
Polycaprolactam —NH—(CH,)s—C— CH,—(CH3)s—C=0
CH;
Poly(dimethyl siloxane) —Sli—O—- (CH3),—Si—Cl,
L, 10

Let us depict a single repeat unit in a polymer molecule as a bead and
the entire molecule as a strand of these beads. If the repeat units are arranged
in a single-stranded structure as shown in Figure 1-1(a), the molecule is
said to be linear, no matter how the strand may be snaked or flexed, and we
speak of a linear polymer. If the units are joined in a three-dimensional
array as depicted in Figure 1-1(c) (in two dimensions), the polymer is said
to be crosslinked. Such a polymer may be visualized as an array of linear
molecules joined by chemical crosslinks into a network of macroscopic
proportions. If an otherwise linear chain has side-chain appendages, as in
Figure 1-1(b), where each molecule is still separate and discrete from its
neighbors, the molecule is said to be nonlinear, and it is now referred to as a



Sec. 1071 The Nature of High Polymers 5

branched polymer. As will be explained later, fundamental differences exist
between these three types, and they should not be confused. We will see
that structural variations on the linear chain also occur.

In addition to the molecular shape fixed by chemical bonding, as in the
linear, branched, and crosslinked varieties of molecules, variations in the
overall shape and size of molecules arise through rotation of the chain atoms
about primary valence bonds. Just as a chain of beads exhibits some degree
of flexibility, so does a polymer molecule. For example, some molecules like
polyethylene exist in the crystalline state in a planar zigzag form (bond
length = 1.54A, bond angle = 109° 28’), as illustrated in Figure 1-2(a).
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(c) Crosslinked

Figure 1-1. Representation of linear, branched, and cross-
linked polymer systems.



