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Preface

communication systems. Two well-known examples are error-

correction codes and cryptography. The traditional way of imple-
menting the corresponding algorithms is software, running on
general-purpose processors or on digital-signal processors. Never-
theless, in some cases the time constraints cannot be met with instruction-
set processors, and specific hardware must be considered, that is,
circuits specifically designed for executing those complex algorithms:
they implement the particular computation primitives of the algo-
rithms and profit from their inherent parallelism.

Apart from the application-specific integrated circuits (ASICs)
solution, another technology at hand for developing specific circuits is
constituted by field-programmable gate arrays (FPGA). They form an
attractive option for small production quantities as their nonrecurrent
engineering costs are much lower than those corresponding to ASICs.
They also offer flexibility and fast time-to-market. Furthermore, in
order to reduce their size, and so the unit cost, an interesting possibility
is to reconfigure them at run time so that the same programmable
device can execute different predefined functions.

This book describes algorithms and circuits for executing the main
finite-field operations, that is, addition, subtraction, multiplication,
squaring, exponentiation, and division. It is mainly addressed to hard-
ware engineers involved in the development of embedded systems,
including finite-field operations. Distinguishing features of this book
are the following:

I Yinite fields are used in different types of computers and digital

e The emphasis is different from the classic texts on finite fields.
Itis not limited to the description of algebraic and algorithmic
aspects. The main topic is circuit synthesis.

e A special importance has been given to FPGA implementa-
tions. The particular architecture of these components leads
the designer to use synthesis techniques somewhat different
than the ones applied for ASIC for which standard cell libraries
exist. Throughout the book examples of FPGA implementa-
tion are described.

Xi
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Preface

* Most algorithms are described in Ada, a programming
language similar to VHDL, so that they can be executed and
the correctness of the proposed algorithms can be verified
with actual input data.

* Inwhatconcerns the description of the circuits, logic schemes
are presented as well as VHDL models, in such a way that
the corresponding circuits can be easily simulated and
synthesized.

Overview

The book is divided into 10 chapters. The first chapter (mathematical
background) gives the main definitions and properties of finite fields.
Chapters 2 to 4 are dedicated to the operations modulo m and the
corresponding circuits. Chapter 2 deals with the modulo m reduction,
Chap. 3 with the modulo m addition, subtraction, multiplication, and
exponentiation, and Chap. 4 with the modulo p division, where p is a
prime. Chapters 5 and 6 are dedicated to the operations modulo f(x),
where f(x) is a polynomial over a finite field, and to the corresponding
circuits. Chapter 5 deals with the modulo f(x) addition, subtraction,
multiplication, and exponentiation, and Chap. 6 with the modulo f(x)
division, where f(x) is an irreducible polynomial. Chapters 7 to 9 are
dedicated to the main arithmetic operations over GF(2"). In Chap. 7
polynomial bases are considered (thus, a particular case of the topics
dealt with in Chaps. 5 and 6). In Chap. 8 normal bases are used, and
in Chap. 9 dual and triangular bases are considered. Chapter 10 is
dedicated to elliptic-curve cryptography, currently one of the main
finite-field applications.

There are four appendices. Three of them describe circuits for
performing arithmetic operations over some particular fields, namely
a prime field GF(2'> - 2% — 1) in App. A, two optimal extension fields
GF(239") and GF((2* - 387)°) in App. B, and two binary extension
fields GF(2'*°) and GF(2*®) in App. C. Appendix Dis a brief comparison
of the syntaxes of Ada and VHDL.

All the chapters, but the first one, include algorithms, circuits,
and results of FPGA implementations. The algorithms are described
in Ada and the circuits are modeled in VHDL. Complete and
executable source files (Ada and VHDL) are available at the authors’
Web site www.arithmetic-circuits.org.
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CHAPTER 1

Mathematical
Background

make this book self-contained. For further details the reader can

refer to textbooks on Algebra ([Coh93], [GN03], [Her75],
[Hun74]), Number Theory ([Kob94], [Ros92], [Ros00], [Gar59)), Finite
Fields ([LN83], [LN94], [McC87], [Men93]), and Cryptography [MOV9%],
from where the following material has been mainly extracted.

I I this chapter presents some topics in mathematics; it is intended to

1.1

Nnmber Thé.d'fy .

1.1.1 Basic Definitions

Definitions 1.1
1. The set of natural numbers' N=1{0, 1,2, 3, .. .}.

2. Thesetofintegers Z={...,-3,-2,-1,0,1,2,3, ... }.
Definition 1.2 Given two integers x and y, y divides x (y is a divisor of x)
if there exists an integer z such that x = zy.

Definition 1.3  Given two integers x and y, with y > 0, there exist two
integers q (the quotient) and r (the remainder) such that

xX=qy+r where0<r<y

It can be proven that g and r are unique.
Then (notation)

r=xmody g=xdivy

An alternative definition:

'For convenience, the element zero has been included in N.
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Definition 1.4 (integer division) Given two integers x and y, with
y >0, there exist two integers g (the quotient) and r (the remainder) such
that

x=qy+r  where0<r<yifx20and -y<r<0ifx<0

It can be proven that g and r are unique. Then (notation)
r=xremy q=x/y

Examples 1.1
1. x=-16,y=3:

-16 mod3=2,-16 div3=-6,-16=-6-3+2

-l6rem3=-1,-16/3=-5,-16=-5-3 + (-1)
2. x=-15,y=3

-15mod 3=0,-15div3=-5,-15=-5-3+0

-15rem3=0,-15/3=-5,-15=-5-3+0

Definitions 1.5
1. Given two integers x and y, z is the greatest common divisor of
x and y if
z is a natural number (nonnegative integer),
z divides both x and y,
any other common divider of x and y is also a divider of z.

Notation: z = gcd(x, y).

2. Given two integers x and y, they are said to be relatively prime
if ged(x, y) = 1. '

3. Aninteger p > 1 is said to be prime if its only positive divisors
are 1 and p.

1.1.2 Euclidean Algorithms

Given two natural numbers x and y, the Euclidean algorithm for natural
numbers computes ged(x, y). It is based on a series of integer divisions:

r(i—1)=q@)y@+r@i+1) where 0<r(i+1)<r(i)

Observe that any divider of (i — 1) and (i) is also a divider of
r(i) and r (i + 1) so that

ged(r(i—1),r(i)) =ged(r(i), r(i+1))
Initially

r(0)=x and r(l)=y
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Then compute

r(0)=gMr@)+r(2)
r()=q@)r2)+r(3)
r(2)=q@)r3) +r@)

.r.(r‘t—3)=q(n—2)r(n—2)+r(n—1)
rm—-2)=qn—-rn-1)+rn)

where r(1) >7(2) > - - > r(n) =0 and gcd (r (i - 1), r(i)) = ged(r (i),
r(i + 1)), so that

ged(x, y) =ged (r(0), r(1))=- - - =gcd(r(n—1), r(n)) =gcd(r(n-1),0)
=r(n-1)

Example 1.2 Let 7(0) = x = 9520; r(1) = y = 3120;

9520 = 3.3120 + 160
3120 =19.160 + 80
160=2.80+0

Then gcd(9520, 3120) = 80.

In the extended Euclidean algorithm a series of coefficients b(i) and
c(i) is calculated in parallel with the computation of 7(0), r(1),
r(2),...,r(n):

b0)=1 c(0)=0

b(1)=0 c()=1

b(2) = b(0) - b(1)q (1) 6(2) = ¢(0) - e(1)q (1)

b(n— 1)=b(n-3)-b(n-2)q(n-2) cn-1)=c(n—-3)—cn-2)

q(n-2)
It can be demonstrated by induction that
r(i)=b(i)x+c(i)y Vi=0,1,2,...,n=1
In particular
ged(x, y)=r(n—1)=b(n—-1)x +c(n - 1y

In conclusion the extended Euclidean algorithm expresses the
greatest common divisor z of two natural numbers x and y as a linear
combination of x and v, that is,

z=bx+cy (1.1)



