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PREFACE

This tract is based on lectures which each of us has given in
Cambridge or elsewhere. There are already a good many books on
the subject; but we think that there is still room for one which is
written in a modern spirit, concise enough to ‘be included in this
series, yet full enough to serve as an introduction to Zygmund’s
standard treatise, _

We have not written for ph’ysxcxsts or for beginners, but for
mathematicians interested primarily in the theory and with a
certain foundation of knowledge. In particular we assume acquaint-
- ance with the elements of Lebesgue’s theory of integration: it is
impossible to understand the theory of Fourier series properly
- without it, and experience shows that it is well within the powers

of any clever undergraduate. The actual knowledge needed here
can be acquired quite easily from chapters x—xii of Titchmarsh’s

Theory of Functions. As regards the theory of trigonometrical series,

the book is ‘officially’ complete in itself; but we reécognize un-
officially that practically all our readers will have some knowledge
of the subject (such as the substance of Titchmarsh’s cha.pter xiii)
already.

We have naturally been forced to omit much which we should
have liked to include. In particular we have no space for the
inequalities of Young and Hausdorff, Marcel Riesz’s theorem con-
cerning conjugate series, theorems concerning Cesaro summation
of general order, or uniqueness theorems involving summable
series. And we give no results about special series except a few
which we require to illustrate the general theory. -

The notes at the end are not systematic; we have inserted only
. such references and comments as we could make shortly and
seemed to us likely to be useful. In particular we make no attempt
to give any adequate idea of the history of the subject: Euler,
Fourier himself, Poisson and Dirichlet are hardly mentioned. It is
quite impossible in an account like this to do any justice to the
great mathematicians who founded the theory.

We have to thank Miss S. M Edmonds, Dr W. H. J. Fuchs,
Dr A. J. Macintyre, anrd Dr A. C. Offord for assistance with the

proof-sheets and many valuable criticisms.
G.H. H.
. W.W.R.
Oambridge and Aberdeen, Sept. 1943
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PREFACE TO SECOND EDITION

G. H. Hardy is no more. British Mathematics has lost its un-
disputed leader; my Refugee colleagues in this country mourn .
him the sincere humanitarian who offered understanding sympathy,
advice, and assistance in difficult times; and I myself, if I may claim
it, miss a real friend.

No doubt the reader of this Tract will notice in its style the hand
of the master: the final draft was written by Hardy. I have not
interfered with it in the new edition. A few misprints and mistakes
were pointed out to us by various colleagues; the worst are the ‘slip’
in the proof (ii) of Theorem 31, and the false form of Theorem 59.

These are now corrected.
: W.W.R.

Newcastle upon Tyne, June 1949

PREFACE TO THIRD EDITION

A few remaining mistakes are now corrected, amongst them the
wrong numerical value of the Gibbs constant. An unusual forr of
Egoroff’s theorem has been employed in the proof of Theorem 89.
This form is now explicitly stated in §1.4 and its proof indicated
in the Notes.

W.W.R.
Newcastle upon Tyne, September 1955



vidi NOTATIONS

We use the abbreviations t.s. (1), ¢.s. (3), F.s., Fic. (4), p.p. (5),
0.8., n.0.8. (11) in senses defined on the pages indicated in brackets.

The O, o notation is used in the manner now customary: see,
e.g., Hardy, Pure Mathematics (ed. 8, Cambridge, 1941), p. 164.
The symbol ~ is used occagionally (e.g. p. 49) for asymptotic’
equality, but more generally to express the relation of & function
to its F.s. '

‘% is the conjugate complex of z. [#] is the integral part of x.
Min (z, y) and Max (z, y) are the lesser and greater of z and y.
ForMax]f| seep 7.

Eu denotes a sum over ¢ Sn < <f, whether « and g are integral

ot not. If B<a, it is 0. We sometimes omit limits in sums and
integrals, when it is clear what they are.

{a, b) is the closed interval a <x<b. We use this symbol only
when the closure of the interval is important, using (a, b) when the
interval is open or when the distinction is irrelevant.

H is a ‘constant’, i.e. a number independent of the parameters
of the argument, Whose precise value is immaterial. We sometimes
use ¢ for ‘any positive number’ (with the emphasis on its posmble
smallness) without special explanation (e.g. pp. 7, 14).

A new symbol occurring for the first time in a formula without
explanation is defined by the formula. Thus C,(0) is defined as

¢, e by (1.1.8), p. 1.
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I. GENERALITIES

1.1. Trigonometrical series. A trigonometrical series (t.s.)
is a series of the form /
(1.1.1) 14,(0) + 3 4,00),

*where

(1.1.2) A4y(0) =a, A,0)=a,cosnf+b,sinnd (n>0).

We call this series 7'(8) or simply 7'. -
The partial sum of 7'(@), of rank =, is

(1.1.3) 8a(6) = $4,(0) + % 4,,6).

The coefficients a,, and b,, are given, in the first instance, for n > 0-
and n 2 1 respectively. We define a,, and b,,, for other integral values
of n, by ,

(1.14) a_,=@a, (n>0), by=0, b_,=-=b, (n>0),
and ¢, by '

(1.1.5) Cp = %(an_ibn);
so that
(1.1.6) S @y =CptC_y, b, =1(c,—c_,).

Conversely, if the c, are given, we may define a, and b, by (1.1.6).
Then

(1.1.7)
8,(0) = co+ 2 {(cp+_,) cOSME +1(c,, —C_,,) sin mb} = % Cp €™,
1 -n

We may therefore also define T'(0) as

(1.1.8) E C.0) = §: i, en%0,

and s,(0) by (1.1.7).

We shall call (1.1.1) a ‘real’ and (1.1.7) a ‘complex’ t.s. The
adjectives refer to the trigonometrical or exponential functions
which occur in the series. The coefficients @, and b, in (1.1.2) may
be complex; but we may suppose them real, when this is convenient,
by considering the real and imaginary parts of 7'(6) separately.
The series are formal series: there is no implication of their con-

HR I



2 GENERALITIES

vergence for all or any 6. But (1.1.8) should be thought of as a . -

limiting form of (1.1.7), i.e. as a series in some sense ‘equally ex-
tended’ in the positive and negative directions.

In the simplest cases the series have a sum function f(#), and their
coefficients can be expressed simply in terms of f(6). Suppose, for,
example, that the series are uniformly convergent. Then, multi-
plying by cosm@ and sinm@ or, in the complex case, e™%, inte-
grating term by term over (—,7), using the familiar formulae

[ oo 0 (m=*n)
cosmf cosnfdfd = n (m=n=+0),

2m (m=n=0)

; 0 (m=n)

J sinmb sinnfdf = w (m=n=+0),

| il 0 (m=n=0)

J” cosml sinnfdf = 0,

=%

-n

(1.1.9)

0 (m=£n)
2m (m=n)’

n
J on—m)i6 J@ —
\J —T

and finally replacing m by =, we find that

Ja" =2[" j(0)cosnoas, b, = ;lr " f(6)sinnddo,
(1.1.10) ’ L o
e —ni6
l Cn =5~ _"f(ﬂ)e de.

If f is real, @, and b, are real, ¢, and c_, conjugate. If f is even,
b, = 0 and

(1.1.11) a, = %Jﬂf(ﬁ) cosnddo.
0

If f is odd, @, = 0 and b, may be reduced similarly.

1.2, Trigonometrical series and harmonic functions.
It will be useful to begin by indicating the formal connections
between the theory of t.s. and the general theory of harmonic
and analytic functions, of which in’ a sense it is a part. In what
follows z = z+1y = re¥ is a complex variable and Z = z —fy = re—%
its conjugate. To fix our ideas, we suppose a, and b, real (so that
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¢, and c¢_, are conjugate). We also suppose a, and b, bounded (as
they will be in nearly all our work). The power series in 7 which we
write down will then be convergent for r<1 and, for a fixed 7,
uniformly in 6.

If

» o : . -] o0
(1.2.1) u(r,6) = _ch,,r'"' el = ¢y + % c, r"en? 4 21 oire ™,

then u is & harmonic function, a solution of either of the equations

Pu P (B\ B
Fr or) %1302

It ié real and regular for r < 1. We can also write

(1.2.2) = 0.

(1.2.3) u(r, 6) = Jao + %A"(e) ,
and 7'(0) is the result of Wntmg r = 1 in either form of u. Now‘
(1.2.4) ur,0) = Hr@+F@), 7
where 4 LR
(1.2.5) F(z) = co+2 nz:] 62" / /
Thus is the real part of F(z). Also, if we write
(1.2.6) (0) b, cosnf —a,, sin nd,
we have
(1.2.7) F(z) = w(r, 6) —1v(r,0),
where :
(1.2.8) v(r,0) = )?.Bn(ﬁ) o

We shall call v and v conjugate harmonic functions, arid the
series .

(1.2.9) 1) = EB (0);
obtained by ertmg r=1 in (1.2.8), the conjugate series (c.s.)
of T'(0).

It will be convenient to prove here two formulae needed in Ch. mr. If
Cy = ¢o, Cp = 20, for n>0, so that F(z) =-XC,z" and r <1, then
1
P (u w)e0df = C',,r" (n=0), —f (u—tw)e™?df =0 (n>0).
-n

1-2



4 GENERALITIES

Hence (combining the first equation with the conjugate of the second)
1 [ V1T 1 (7 .
(1.2.10) —f udf. = R(C,), —-f ue"0df = — ve~"0df = C,r
en) 4 n)—a )

for n>0. Actually, our C, here is real.

1.3. Trigonometrical Fourier series. Our proof of the
formulae (1.1.10) depended on the hypothesis that 7'(f) was uni-
formly. convergent, a drastic assumption unlikely to be satisfied by
a t.8. chosen at random. The formulae themselves suggest that we
should look at the series from a quite different point of view.

We start from a (real or complex) function f(6) integrable (in the
sense of Lebesgue) in the interval (—, ). It is then convenient
to define f(6), for all real 6, as a function with period 2, so that

f(0+2m) = f(6), and in particular f(m) = f(—m), whenever f(8) is
defined for one of the values of & in question.

We now define a,,; b,, and ¢, by (1.1.10). We call a,, and b, the
‘real’, ¢, the complex, Fourier constants (F.c.) of f(6), and (1.1.1)
or (1.1.8) its Fourier series (F.8.). We express the fact that a, and
b, are the F.c. of f(6), and (1.1.1) its F.s., by writing f~ (ay, b,) or

(1.3.1) f(0)~§ao+l§(anco'sn0_+bnsinn0).
1

Similarly we write f~(c,) or f(6)~Zc,e™?, and call (1.1.1) the
; ‘,rea.l",‘,‘(l.l.S) the ‘ complex’, F.s. of f(6). We shall sometimes write
T(f) for the F.s. of f, and 7(f) for the conjugate t.s. '

Since all the functions in (1.1 .10) are periodic, we can replace the
range of integration by any range (£,£+2m). In particular, it is
often convenient to regard (O, 2m), rather than (—w,m), as the
fundamental interval.

To say that a t.s.is a F.s. is to say that its coefficients a,, b,, or
¢, are expressible in the form (1.1.10), that is to say that a certain
‘system of integral equations has a solution. It is plain that the
meaning of this statement depends on the definition of integration

which we are using. We have adopted Lebesgue’s: any restriction

or enlargement of the definition of integration would lead to a
corresponding change in the class of F.s.
Wé shall see, for example, that the series

‘ in20 sin30
(1.3.2) }+cosO+cos20+...,  (1.3.3) S0 20, snd

logg+ l'og3+m

T




GENERALITIES 5

are nct, in our sense, F.s.; bub.the coefficients of each series can be expressed
in -‘Fourier form’ by an appropriate generalization of the notion of an
integral. Those of (1.3.2) can be expressed in the form

a, 1 [7 cos
b”—;J_"sinﬂed¢(6),

a ‘Stieltjes integral® in which ¢(f) is — {mr, 0, and 4 for negative, zero, and
positive 0; and those of (1.3.3) in the form (1.1.10), f(6) being the sum of the
series and the integral for a,, (which is 0) a ‘principal value’ in the sense of
Cauchy. '

A t.s. may or may not converge, and it may or may not be a F.s.;
and there is no obvious correlation between the two properties
(thongh the simplest series may be expected to have both). The
geries (1.3.3) converges for all &, but is not a F'.s.; on the other hand
there are F.s. which do not converge for any 6. It is not even plain
a priori that a t.s., known to converge and to be a F.s., is necessarily
the F'.s. of its sum. v

Trigonometrical series are a special class of orthogonal series; and
there is a considerable part of their theory which is best regarded
as part of the theory of these more general series, and which we shall
develop from this point of view in Ch. 1. But we must begin by
a short résumé of certain parts of the theory of functions of a real
variable with which we shall assume the reader to be acquainted.

1.4. Measure and .integration. We take as known the
elements of Lebesgue’s theory of measure and integration. We
denote by L(a, b), or simply L, the class of functions f(z) integrable,
in Lebesgue’s sense, over (a,b). The interval of integration will
always be finite. We shall sometimes say ‘fis L’ for ‘f belongs to L’.
We regard the integral of a non-negative function f as defined when-
ever f is measurable, and having a finite or infinite value according
as f is or is not L.

We call a set of measure 0 a null set: null sets are irrelevant in
the theory of integraticn. If f and g differ only in a null set, we say
that they are equivalent, and write f=g. We also say that f = g for
almost all z, or almost always (or almost everywhere), or ‘p.p.’
(presque partout). If f=0, we say that Jis null. We write mE for the
measure of a set E.

We shall sometimes use letters for other classes of funktions
besides L; in particular we shall denote by B, C, C,, and V the
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classes of bounded functions, continuous functions, functions with
% continuous derivatives, and functions of bounded variation*.

We take for granted the classical theorems concerning integration
and differentiation, the theorems of partial integration.and sub-
stitution, the first and second mean value theorems, and the two
most familiar theorems concerning passage to the limit under the
integral sign. These last are: (i) if f,() > f(x) p.p-and | f,,(2) | £ $(x),
where ¢(z) is L and independent of n, then

(1.4.1) f folz) dzz— f f(x)dz;
(ii) the conclusion is also true if f,(x) increases with n for all, or
almost all, z provided that J fo(@)dz+ —c0. In case (i) we shall say

that f,,(x) converges dominatedly to f(x). In particular the conditions
are satisfied if f,, (x) >f(z) for all z, and | fu(@) | £ H,in which case we
shall say that f,,(%) converges boundedly to f(z). In case (ii) it is to be
understood that the limit function f(z), which certainly exists p.p.,

may be infinite for some z, and that f(z) dz may also be infinite, in

which case it is to be replaced by co in (1.4.1). Finally, the integra-
tions in (1.4.1) may be taken over the whole interval (a,b) or any
measurable set contained in it. A useful addition to (i) is ‘Fatou’s

lemma’: if f,,(x) = 0 and f,,(x)—>f(x) P-p., then
[160)d0 s1im [ (01

We require one theorem concerning the inversion of the order
of integration, Fubini’s theorem that '

-fdx'.ffdg = fdyf.fdx =j fdzdy

whenever f(x,y) is integrable. The integrals may be infinite when
fzo.

~ We shall occasionally use the notion of the Stieltjes integral of a
continuous function with respect to a function of ¥, the rule for
the integration of such an integral by parts, and the theorem that

de¢|§MV, ‘where M is the maximum of |f| and V the total

variation of ®. In Ch. vi we use Egoroff’s theorem in two forms:
(i) if f,(x)>f(z) p.p. in K, then fo(@)—>f(x) uniformly in’ a set E*

* A complex function is V when its real and imaginary parts are V.

—
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included in B and of measure greater than mH—e; (ii) a similar
conclusion holds if f,(x) >f(z) as A~ 0 p.p.in B prowded that each
fn(x) is continuous in E.

1.5. The classes L?. We shall say that f is L® if f is measur-
able and |f|? is L: we shall always suppose that p=1. When
pis 1, L?is L. If fis 17, and 1S p <g, then fis L?,

We shall write

(1.5.1)

N =111l = ([ lflpdw) e e N

Iff1s not L?, N,(f) and Mp(f)- are infinite. We call N,,(f) the norm,
M,(f) the mean, of f, for the interval (a, b) and index p. They differ
only by a factor (b—a)'?; but this difference is important.

If p> 1, we define p’ by

P D 1 1

1.5.2 ) = ——, .....+_....__1

(1.5.2) =1 pty
Then p’' > 1:if p<2, p'>2. We call p and p’ conjugate indices, L?
" and L* conjugate classes. The class L? is self-conjugate. If p = 1,
we interpret p’ as 0o, and conversely. We shall define the class L®,
conjugate to L, in a moment.
~ The means M,(f) have three fundamental properties. The first,
viz. - '

(1 5. 3) Ml(fg) = Mp(f) Mp (g)’
is Holder's inequality (Schwarz’s mequahty when p = 2). The
second, viz. \

(1.5.4) M,,(f+9) = M, (f)+M,(9),
is Minkowski’s inequality. The third, viz.
(1.5.5) M (f)=sM,(f) (g<p)

states that M, (f) is, for given f, an increasing function of p. The
norms N_(f) ha.ve the first two properties but not the thn'd
When p >0,

(1.5.6) N,(f)>Max|f]|, M,(f)>Max|f],

where Max|f| is the ‘effective upper bound’ of |f|, i.e. the
smallest % such that | f | <9 p.p. It is natural to define L* as the
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class of f for which Max | f | is finite. This is the class of ‘effectively
bounded’ functions, or functions equivalent to bounded functions.
We may now write

(1.5.7)  N(f) = M(f) =Max|f|;

and it may be verified at once that (1.5.3)-(1.5.5) remain true when
“p or p’ is infinite.

1.6. Space L? and its metric. The theory of the classes L2,
and of the inequalities associated with them, is much illuminated by
the use of geometrical language. The class L? defines a functional
space, each function defining a point of the space. We do not dis-
tinguish twp functions equivalent to one another, so that each
point is a elass of equivalent functions. In particular the origin 0
is the class of null functions. The space L2, which is particularly

~important, is called Hilbert space. We define the distance d,(f,9)
between f and g, in L?, by

‘ (1'6'1) 8p(.fw 9) =  Np(f" 9),

or 3(f,g) = N(f—g), omitting the suffix when it is plain of what
space we are speaking. In particular, N(f) is the distance of f from
‘the origin. If p = oo, then

(1.6.2) 8(f,9) = Max|f—g|.

We can also define space C, the space of all continuous functions:
here also distance is deﬁned by (1.6.2), but ‘Max’ is the ordinary
maximum.

If we take f = f, — f,, ¢ = fo—f31n (1.5.4), it becomes

(1.6.3) 8(f1:fs) 2 8(fr. fo) +8(f2r fa).

and appears as an extension of the theorem that a side of a triangle
cannot exceed the sum of the other two.

We can now set up a metric in space L? (or C), and carry over to
it the ideas of the ordinary theory of sets of points. One such idea
is particularly important for our purposes, that of a class of functions
dense in a wider class. Suppose that 8, is a sub-class of L? and S, a
sub-class of S,. Then we say that S, is dense (L?) in S; (or simply
dense in ;) if, given any ¢ of 8, and any positive ¢, there is a { of
8, such that d,(¢, ) <e. It follows from (1.6.3) that the relation of
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density is transitive: if S, is dense in §,, and S, in S, then §; is dense
in §;. In such statements, of course, a fixed metric is presupposed.
It also follows from (1,5.5) that if S, is dense (L?) in §,, and
1 =q<p, then 8, is dense (L9) in §,.*
There is one proposition concerning dehsxty which we shall use
80 often that we state it as a formal theorem

Theorem l If 1 <p<oo, then the classes L2 (¢>p), L=, B, C,
and G, are dense in. L».

The theorem remains true if all the functlons are restricted by
periodicity. We shall prove later that the eclass of algebraical
polynomials'is dense in L?, and the class of trigonometrical poly-
nomials dense in the class of periodic functions of L?. -

1.7. Convergence in L? (strong convergence). If f, and f are
L?, and

(1.7.1) 8,(fn, f)—>0

when n— 00, or (what is the same thmg) if N, (f,—f) tends to 0,
then we say that f, tends (L?) to f, and write

(1.7.2) far SR,

We shall also say that f, tends strongly to f with ind®x p (omitting
the reference to the index if there is no ambiguity). When p = oo,
8(fus )= Max [fu=r|; and strong -convergence is.‘uniform con-
regenen PPOCSPUS) T 4 i and (3 amfommily.

A strong limit is ‘effectively unique’: if f;, > f (L*)and f, »g (L?),
then f=g.

Iff,—f(L®) and 1 =q <p, thenf,,—>f(1ﬁ)

If £, —>f (L?), then N(f,) >Ny (f).

I fo—>f (L) and g, > g (L¥), then fadn—>fg (L) and

(1.7.3) f P j ik,

'Inpa.rticularthis'istruéifgisL"andgn=gfora.11n. '
If f,>f p.p., | fo| S¢, where ¢ is L? and independent of n, and
1< p <o, then f, —»f(L?).

* It is not true that N, (@ — ) S N,(@ — ), but (owing to the arbitrariness
of €) the powers of b —a involved in (1.6.5) do not affect the conclusion.
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The fundamental theorem concerning strong convergence is

Theorem 2. In order that Jfrn should converge strongly, with index p,
to a function fof L?,it1s neceasary and sufficient that

[ta=talpdz>o.

when m and n tend to infinsty.* There is then a sub-sequence (ny)
such that f,,k—> f for almost all x.

Theorem 2 is the analogue, for space L?, of Cauchy’s theorem
concerning ordinary limits. When p = co it reduces (apart from the
neglect of null sets) to the corresponding theorem about uniform
convergence. Strong convergence does not imply convergence p.p.

- (or for any ), nor is the converse true. But it follows from Theorem 2
that, if f, —f (L?) and f,—f* p.p., then f=f*.

Finally there is one theorem which we shall often use.

Theorem 3. If 1<p<coand fis L?, then

f" | f(@+h)—f(@) [ dz >0

when h—>0, i.e. f(z+h)—>f(z) (L?).

The intégral involves the values of f for certain values of z outside
(a,b). We may | either suppose these values to be 0, or regard f(x)
as a function with period b —a.

1.8. The resultant of-two periodic functions. The resultant
(Faltung) of two functions f and g, ea.ch with penod b—a, over
(@, b), is

(1.8.1) r@) =p— f af(w—y)g(y) dy.

The resultant is also periodic, and symmetrical in f, g. The funda-
mental properties of 7(z) are as follows.

Theorem 4. If f and g are L, then r i8 L (and so finite for almost

all z). Also

- 1 (v 1 (b, -1 [?
(1.8.2) mjafdw = b—__—a.,‘afdz m-'.agdw,
and '

(1.8.3) M, (r) < M,(f) My(g).

"~ % T.e. that f|f.—f,. |? dz < ¢ for every positive ¢ and m = M(e), n= N(e).

-+



