WA
BRGIE

BUSINESY

SNicholasI IR AStInGS
RobentfIRVViallis

VAX BASIC for Business

A Screen-based Approach

Nicholas A. J. Hastings

Robert J. Willis

Faculty of Economics and Politics
Monash University

Prentice-Hall of Australia Pty Ltd

© 1984 by Prentice-Hall of Australia Pty Ltd. All rights
reserved. No part of this book may be reproduced in any
form or by any means without permission in writing from
the publisher. The program material contained herein or
in any further deletions, addenda, or corrigenda to this
manual or associated manuals or software is supplied
without representation or guarantee of any kind. These
computer programs have been developed for student use in
a teaching situation and neither the authors nor Prentice-
Hall of Australia Pty Ltd assume any responsibility and
shall have no liability, consequential or otherwise, of
any kind arising from the use of these programs or part
thereof.

Prentice-Hall of Australia Pty Ltd, Sydney
Prentice-Hall International Inc., London
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Ltd, New Delhi
Prentice-Hall of Japan Inc., Tokyo

Prentice-Hall of Southeast Asia Pte Ltd, Singapore
Editora Prentice-Hall do Brasil LTDA., Rio de Janeiro
Whitehall Books Ltd, Wellington

Prentice-Hall Inc., Englewood Cliffs, New Jersey

2 345 87 86 85 84

Printed ‘and bound in Australia by
Impact Printing Pty Ltd, Brunswick, Victoria

Cover by Joel Solomon

VAX, DEC and VT are registered trademarks of
Digital Equipment Corporation, Maynard, Mass.

U.S. ISBN: 0-13-940941L-b

National Library of Australia
Cataloguing-in-Publication Data

Hastings, N.A.J. (Nicholas Anthony John), 1937- .
VAX BASIC for business.

Includes index.
ISBN O 7248 1253 9.

1. VAX-1l (Computer) - Programming.

2. BASIC (Computer program language).

3. Business - Data Processing. I. Willis,
Robert J. (Robert John), 1950- . 1II. Title.

001.64'24

VAX BASIC for Business

A Screen-based Approach

Preface

The aim of this book is to explain how to write BASIC
programs for business applications, making use of the
features of the wvideo screen terminal. No previous
knowledge of computing is assumed.

Video screens are unow universally used as the human
interface of computer systems. Despite this, existing texts
on computer programming deal almost exclusively in
programming techniques which are appropriate to the punched
card era. This book presents a screen-based approach to
programming for the modern computer user.

Screen-based programs are easy to write and very easy
to use. Their main characteristic is that they guide the
user through the application to which they relate, 1in a
simple and self-explanatory way.

We start by introducing the elements of the BASIC
programming language and give examples in the form of simple
programs . Then we show how to write programs which use the
video screen, thus making it easy for the user to operate
the program. Gradually we build up a full explanation of
how to write programs in BASIC with such features as:

Menus

Data entry screens

Screen based enquiry reports

Systems containing many different screens
Business data storage and retrieval
Printed reports

Finally we look at program design and explain a simple
approach to developing complex programs in a modular
fashion.

The programs in this book have been developed and
tested on a VAX computer, with some additional programs for

ix

microcomputers. In regard to cursor control, we give
details of the techniques appropriate for VAX, IBM-PC,
Apple, TRS-80 and Commodore computers. The Apple commands
refer to Applesoft Basic and the TRS-80 commands refer to
compiler Basic for the Model II and Model 16. Details are
given of the cursor addressing sequences specified by the
American National Standards Institute (ANSI). These
sequences are used by DEC VT100 Series terminals, which are
the terminals most frequently used with VAX computers. Most
other computers wuse one of the above standards, or use
similar procedures to which the user can readily adapt.

We would 1like to express our thanks to Dorothy Jones
who prepared the text in camera ready form, and to Ng Soo
San and Ying Wan Kong who assisted in the program checking
and provided solutions to many of the exercises.

Preface

1

Contents

Elements of BASIC

°

el e L
— =0 00N WU WN -

—
N = O

—
°

1.13
1.14
1.15
1.16

What is a Computer?

What is a Program?

Components of a Computer

Creating, Storing and Running a Program
Errors and Debugging

The PRINT Statement and the END Statement
String Variables

Remark Statements

Numeric Variables

The INPUT Statement

Data Entry With Text Prompts

Joining String Variables Together
Positioning Output Within a Line

The TAB Function

RESEQUENCE

Exercises

CLEAR and HOME

NNNMNDNDNNDN
NoOUswON -

NN
O

The Screen — Rows and Columns

The Cursor

Scrolling

Cursor Control

Screen Design

Clearing the Screen and Homing the Cursor

Clearing the Screen and Homing the Cursor
Using Escape Sequences

Setting Up Your Own Control String

A Screen—-Based Program with ANSI Escape
Sequence

Printing a Permanent Copy

Exercises

ix

OO = =

11
13
15
15
16
18
20
21

22

22
22
24
24
22
26

30
32

32
33
34

3 Data Entry and Display

3.1

wwwww
o o e
AUV wWwN

=0 00

0
1
3.12
3.13
3.14
3.15

wwwww

Introduction

Simple Interest Example

Overall Design and Heading

Aligning the Prompts and Data Entry Fields

Spacing of Entries by Rows

Simple Interest Program - Heading, Prompts
and Data Entry

Calculation and Display of Result

Extending the Program

Control Statements

Unconditional Control Statements

Conditional Control Statements

Simple Interest Program - Repeating the Run

Simple Interest Program - Amending the Data

Data Entry Screen Design

Exercises

4 Errors and Error Messages

Eo N
vt wnN =

~
o

& &
o

Checking the Input

Generating an Error Message

Checking the Range

Checking the Data Type

Size of Data Fields - the LEN Function and
VAL Function

Checking for Transcription Errors and
Faulty Data

Sounding the Bell

Exercises

5 Further Elements of BASIC

(S RV, IV, I, IRV, IV, IR, |
s s s @ .
cCoONOTULPHWN =

Introduction

Arrays and Matrices

DIM Statement

FOR ... NEXT Loops

Subroutines

Special Matrix Commands

Random Numbers - RND and RANDOMIZE Functions
Rounding Numbers - The INT Function

vi

35

35
35
36
38
38

39
40
42
42
42
43
44
44
47
51

93

53
53
54
59

61

62
63
63

65

65
65
65
67
66
73
75
76

5.9 Screen-based Example 77

5.10 Exercises 78

Cursor Addressing 82

6.1 Introduction 82

6.2 Moving the Cursor to a Specified Position 82
6.3 Moving the Cursor to a Specified Position

Using ANSI Escape Sequences 84

Moving the Cursor to Point X, Y 85

6.4

6.5 Using Subroutines to Control the Cursor 90
6.6 A Screen-based Program with Cursor Addressing 91
6.7 Data Entry Screen Design with Cursor Addressing 93
6.8 Error Messages 100
6.9 Conclusion 100
6.10 Exercises 101

Menu and Screen Systems 102
y | Introduction 102
T2 Menus 102
7.3 Loan Repayment Example 104
7.4 Designing the Screen System 105
7.5 Screen Numbering 108
7.6 Output on the Screen - Controlled Scrolling 109
7.7 Exercises 115
Storing and Retrieving Data 116
8.1 Introduction 116
8.2 READ, DATA and RESTORE Statements 116
8.3 Computer Files 117
8.4 Sequential Files 118
8.5 Adding Data to a Sequential File 122
8.6 Direct Access Files 122
8.7 Creating a Direct Access File 123
8.8 Reading Direct Access Records 125
8.9 Updating and Deleting Direct Access Records 125
8.10 Indexed Files 127
8.11 Creating an Indexed File 127
8.12 Reading Records in an Indexed File 129
8.13 Updating and Deleting Indexed Records 132

vii

8.14
8.15
8.16
8.17
8.18

8.19

Reading an Indexed File in Alphabetical Order

Duplicate Names

Testing for the End of the File

Sorting with Indexed Files

Screen Systems Design for Data File
Maintenance

Exercises

9 Printed Reports

O O O WO O O
e e e)
[o 2NNV, BN S RSV R

Introduction

Directing Answers to a Printer
Headings and Titles

Printing Tables - PRINT USING

Counting, Totals and Averages

Exercises

10 Program Design

10.1
10.2
10.3
10.4
10.5
10.6

The Importance of Well-designed Programs
Structured Programs

Top Down Development

Developing Your Program

Types of Instruction

Documenting Your Program

11 Introduction to Graphics

11,1
11.2
11.3
11.4
11.5
11.6

Introduction
Graphics Characters
Histograms

Movement Effects
Reverse Video Effect
Exercises

Appendix I Summary of BASIC Commands
Appendix I BASIC Functions

Appendix Il ASCII Characters

Appendix IV Solutions to Exercises

Index

viii

133
134
134
135

136
137

141

141
141
142
144
148
151

152

152
153
154
156
157
158

161

161
161
163
164
167
169

170
180
188
192

232

Elements of
BASIC

1.1 What is a Computer?

A computer is a general purpose machine which can accept and
store data in a form which represents letters, numbers and
other punctuation and control characters. The computer can
reorganize this data in various ways, including carrying out
arithmetic, and can display the results obtained.

A computer cannot think or make decisions except in the
purely mechanical sense of an automatic gearbox (which will
change gear wunder certain preset physical conditions).
Unlike a gearbox however a computer is not designed to carry
out a particular task. Instead, it is designed to follow
any set of instructions supplied to it in an appropriate
form. A set of instructions is called a program.

1.2 What is a Program?

A computer program is a list of instructions which the
computer carries out in order to complete a task. Each
instruction 1is mnormally referred to as a statement. A
program consists of a sequence of statements which the
computer obeys or executes one at a time. The statements in
a program are written 1in a carefully defined language
consisting of certain words and symbols. Many different
computer languages have been developed but only a few are
widely wused. Most languages consist of a precise and

logical form of English, together with mathematical symbols
and functions.

BASIC is a programming language which is widely avail-
able, simple to learn and suitable for a wide range of
applications.

The action of the computer in carrying out the
instructions contained within the program is called
processing. The end result of the processing will be to
perform the task for which the program has been designed.

1.3 Components of a Computer

The computer consists of the following physical components.

1. A keyboard, similar to a typewriter keyboard, for
entering data.

2. A screen, similar to a television screen, for display-
ing programs, data and results.

3. A processing unit which contains electronic components
which carry out or execute the program steps. The
processing wunit contains the work space in which the
user's program is held while it is being worked on.
This work space takes the form of random access memory
(RAM).

4. A disk or tape unit which provides permanent storage
for programs and data in computer readable form.

5. A printer for making a permanent copy of programs,
data or results.

The keyboard and screen together are referred to as a

visual display terminal. In a microcomputer, all of the
above components will normally be grouped together in a
single unit. In larger computers, several users can be

supported simultaneously, and several separate terminals
will be connected by cables to the processing unit.

1.4 Creating, Storing and Running a Program

To create a computer program, the user first switches the
terminal on and then logs on using a pre-assigned user
number and password. To enter the BASIC environment on the
VAX system the user enters the word BASIC. The user can
subsequently 1leave the BASIC environment by entering the
word EXIT and can log off using LOGOFF. The computer will
prompt the user to enter a command by displaying the word
Ready. The procedure for logging on and off is illustrated
in Figure 1-1.

This book 1is concerned with the details of the BASIC
programming language. Initially, however, we need some
general information about the commands used to control our
programs. Suppose that we enter the following simple
program

100 PRINT '"HELLO"
200 PRINT "MY NAME IS JOE"

Note that we enter a number at the start of each line. To
go onto the next line we press the RETURN key. In our
simple program we have numbered the lines 100 and 200. We

could have used the numbers 1 and 2, but it often turns out
to be wuseful to have gaps in the line numbering so that
additional lines can be inserted. If we make a mistake when
typing in a line of a program we can delete the incorrect
characters by pressing a key marked DELETE or RUBOUT (or
something similar depending on the terminal) and then
retyping the characters correctly. The reader is advised
against using the BACKSPACE key, as this does not delete the
preceding character, even though that character will
disappear from the screen when the next character is typed.
The computer does not normally read the line of program or
data until we press the RETURN key.

If we have already entered a line of program and we
then decide that it 1is incorrect we can replace it by
retyping the line correctly, starting with the original line
number . We can delete a line entirely by typing just the
line number and pressing the RETURN key. Additional lines

yo pue uo buib6o -1 ainbi4

vl
44
7

i

08
89

o*|BY

K- 4

..

ve

€C

Ol
(=1l

[44

><

AR

[
U N

/2
0L

v
oL

08
o

2

65

133HS ONILLYIWHO4 N3340S

can be entered 1in any order and the computer will
automatically insert them into the program in line number
sequence.

The current status of the program can be displayed by
entering the command

LIST

This causes the computer to display the program in line
number sequence.

To make the computer execute the program which is
currently in the work space we enter the command

RUN

In the present case the execution of the program will make
the computer display the following

HELLO
MY NAME IS JOE

If we log off, the program which is currently in the
work space will be lost. In order to save the program for
later use, we must give it a name, for example PROGA, and
SAVE it. This is done by entering the command

SAVE PROGA

This command causes the computer to make a copy of the
program which is currently in the work space and store it on
disk (or other medium) with the name PROGA. If an old
version of program PROGA was already in storage it may be
erased by this command. Subsequently we may retrieve the
program by using the command

OLD PROGA

This command will cause the computer to retrieve the
program PROGA from storage on the disk and enter it into the
work space. If another program is in the work space it will
be erased. We can also erase the program which is currently
in the work space by means of the command SCRATCH or NEW.

We can erase the permanent copy of PROGA from the disk
by using the command

UNSAVE PROGA

The VAX saves a BASIC program called PROGA, say, in the form
of a file called PROGA.BAS;*, where the asterisk (%)
represents a version number. The user can obtain a hard
copy printout of this program by EXITing from BASIC and
using the command

PRINT PROGA.BAS

Several other useful commands for controlling programs
are normally available, but the ones indicated so far are
sufficient to enable the user to start using BASIC.

1.5 Errors and Debugging

If your program contains an error it will not run correctly.
In the development of a computer program it is normal for a
number of errors to occur before the program runs
successfully. The process of eliminating errors is called
debugging.

If you make an error in entering a program statement,
such that the computer cannot understand the statement, it
is called a syntax error. When the computer encounters a
syntax error it will stop and display an error message. The
user then examines the program, corrects the error and tries
again.

Sometimes a program will be free of syntax errors but
will still not execute correctly. An execution error would

occur, for example, if we tried to make the computer divide
by zero or read a number from a file which did not exist.

Finally, our program may contain logic errors. As far
as the computer is concerned, these are not errors at all,
since the machine 1is following the given instructions
correctly. However, the program may not give the correct
answer to the problem which the user had intended to solve.
In this case the user has written the program incorrectly
and will need to check carefully through it to find the
mistake.

1.6 The PRINT Statement and the END Statement

The simplest BASIC program is one which will display a
message on the screen. This involves the use of the command
PRINT. The following is an example:

100 PRINT "HELLO"

The statement starts with a line number, in this case 100.
The BASIC command PRINT is then given, which will cause
the computer to print or display something on the screen.
Then there is the text we wish to display which must be in
quotation marks.

If we enter our simple one-line program into the
computer and RUN it by typing the word RUN, the computer
will display the word

HELLO

In some versions of BASIC it is necessary to conclude the
program with an END statement. In this case the program to
print HELLO would be as follows

100 PRINT "HELLO"
200 END

