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Introduction

One of the most famous results in commutative algebra. is Serre’s theorem assert-
ing that the localizations of a regular local ring are again regular. A quantitative
refinement of this assertion, proved by Nagata [Na55] in 1955, states that for
every local ring A and every prime ideal P of A such that A/P is analytically
unramified, there is the following inequality between the multiplicities of the
ring A and its localization Ap.

(1) eo(Ap) < eo(4)

Already Nagata wondered whether the assumption about A/P to be analytically
unramified is necessary and hinted at the fact that one could skip it, if one were
able to prove an inequality for the multiplicities of certain special flat couples of
local rings. In 1959, C. Lech [Le59] suggested that one should try to prove this
inequality for arbitrary flat couples, i.e.

(2) eo(A) < eo(B)

for arbitrary flat local homomorphisms f : A — B of local rings (A, m) and
(B, n). To support his suggestion, C. Lech proved this inequality for first special
examples. As a further refinement he asked in 1964 whether it is possible to prove
even the corresponding inequality between sum transforms of the associated
Hilbert functions, i.e., to prove the existence of a non-negative integer i such
that

(3) H%(n) < H(n)

for every n. Lech found out that the inequality holds always for n = 1 (see also
[Va67]) and announced it for arbitrary n, if the special fibre B/mBof f : A — B
is a complete intersection ([Le?], see also [He90]). In 1970, Hironaka [Hi70] asked
whether it is possible to prove the inequality even for 7 = 1. He treated the case
that the special fibre is a hypersurface and used his result to show that the local
Hilbert function cannot increase under permissible blowing up.

The above inequalities (2) and (3) are in fact assertions of local deformation
theory. In a more geometric setting they mean that given a flat morphism f :
(X,z) — (Y,y) of locally Noetherian schemes (X, z), (Y,y), i.e., a deformation
germ, there is the inequality

(4) eo(Y,y) < eo(X, 1)
for the multiplicities at y € Y and z € X and, respectively, the inequality

(5) Hiy,y) < Hix.q)



for the associated Hilbert series. The latter inequality means that all pairs of
corresponding coefficients should satisfy the inequality. From the point of view
of deformation theory it is quite natural to start with a fixed local singularity
(i.e., a local scheme (Xy,zo)) and to ask whether the deformations of this sin-
gularity (Xo,zo), i.e., the flat morphisms f : (X,z) — (Y,y) with special fibre
(Xy,z) := f~(y) equal to (Xo,zo), satisfy Lech’s inequality. In this terminol-
ogy Lech’s main result ([Le?],[He90]) states that every deformation of a complete
intersection satisfies (5) with ¢ = 1. The weaker inequality (4) was established
by Lech already in 1959 for the deformations of thick points with local ring

K[X1,...,XN]/(X1,..., XNn)?

(where N > 2) and for the deformations of arbitrary complete intersections. In
his paper [He91] the author could show that inequality (5) holds even with i = 0
for many other special fibres, but in general he could derive only the inequality

(6) Hy, -HX,. > Hx,

(without the flatness assumption, see [He82]) which is, in some sense, converse to
Lech’s one. It is natural to ask for conditions ensuring that equality holds in (6)
(in which case (5) is trivially satisfied). One such even equivalent condition is the
flatness of the morphism df : C(X,z) — C(Y,y) induced by f on the tangent
cones at z and y, respectively. The morphism f is called tangentially flat in
this case (graduationally flat in [He82]). Moreover it is possible to give sufficient
conditions for singularities having the property that all their deformations are
tangentially flat. One such condition is that Schlessiger’s module T! of the
tangent cone shouldn’t have (non-zero) homogeneous elements of degree less than
—1 (see [He91]). The condition is fairly easy to verify in many situations, is even
necessary for homogeneous singularities, and enables one to find many classes of
singularities such that all deformations are tangentially flat and therefore satisfy
(5) with ¢ = 0 (see [He91]).

Another approach to formula (1) is to find a direct refinement in terms of local
Hilbert functions. Such a refinement is the following inequality.

) H, ! (n) < Hy(n)

(n an arbitrary non-negative integer). This inequality was proved by Lech [Le64]
in the case of excellent local rings with ¢ = 1 (see also [Be70]). If one uses results
of B. Singh [Si74] on the behavior of local Hilbert functions under permissible
blowing up, Bennett’s proof gives inequality (7) with ¢ = 0. Note that the gap
in Singh’s paper (for the proof of the main theorem, Lemma (4.5) is insufficient)
can be filled (see [He80’], Lemma (2.4)).

In a remarkable joint paper with T. Larfeldt [L-L], C. Lech proved in 1981 that
the two inequalities (3) and (7) are equivalent. However, the fact that (7) is
known in the geometric (i.e., excellent) case has no implication with respect to
(3). It is not difficult to see that inequality (3) is much closer to geometry than
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(7). In particular, (3) is easily reduced to the case of Artinian local rings. So the
result of Larfeldt and Lech states, roughly speaking, if something is true in the
non-geometric (i.e., non-excellent case), then this has consequences for geometry.
This means, to the author’s opinion, that either Lech’s inequality doesn’t hold in
the general case or the inequality reflects a rather deep property of singularities
related with an anyhow mysterious connection between the non-geometric part
of commutative algebra and infinitesimal properties of algebraic varieties.

In case the inequality doesn’t hold in general, it will be hard to find a counterex-
ample, for, in view of the above mentioned cases, when the inequality is known,
one has to find a fairly small locus on the Hilbert scheme. The formal versal
deformations of the most simple singularities, which are not known to satisfy
Lech’s inequality depend on about 60 variables. The equations defining the base
ring of the formal versal deformation (considered up to degree 3, - the degree
2 situation is the first interesting one) fill many pages so that it is hopeless to
find a reasonable specialization. Therefore, the best what one can currently do
is to look for larger and larger classes of singularities satisfying Lech’s inequality
and hope that one can get this way some idea of the singularities which might
fail to do so. The purpose of the material presented here is to contribute to this
aim. More precisely, we want to prove the following weakened version of Lech’s
inequality.

(d)
(8) Hl _HO <H1 .oo l—Td n
Y,y X,z = Xz I I 1-T #
d=2

for every residually separable flat morphism f : (X,z) — (Y, y) of germs (X, z),
(Y,y) of locally Noetherian schemes with special fibre (X, z) := f~!(y). Here

is the dimension of the degree —d part of Schlessinger’s T associated with the
tangent cone C(Xy, z) of the special fibre.

Formula (8) may be interpreted as a numerical refinement of the criterion [He91],
Th. 2.5, characterizing the singularities having exclusively tangentially flat de-
formations. Contrary to (6), the estimation (8) is in the same direction as Lech’s
inequality and allows often to prove inequalities of type (4) and (5), particularly
for singularities with few elements of negative degree in Schlessinger’s T*.

To prove (8), we have to study the morphism ¢ : (Y,y) — (M, *) that defines f
as the result of a base change from the formal versal family of (X,,z), and the
mapping
d¢ : C(Y,y) — C(M,*)

induced by ¢ on the tangent cones at the base points. The latter morphism may
be considered as a local analogue of the Kodaira-Spencer mapping which plays
an important role in the deformation theory of compact complex manifolds (see
[Ko86]). In proving (8), the morphism f : (X,z) — (Y,y) is modified via base
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change of a very special type that allows one to control the behavior of the Hilbert
series and that decreases the negative part of the image of d¢. In case the image
of this negative part is sufficiently small, f is proved to be tangentially flat, i.e.,
(8) is trivially true, and the general case is treated inductively depending upon
the size of this image. Thus the proof heavily depends upon a good description
of Im(d¢), and this is the place where the theorems on tangential flatness are
needed in a generalized version. The natural filtration of the local ring (A, m)
given by the powers of the maximal ideal must be replaced by a more general
type of filtration F4 := (F4)4en where the ideals F' are such that A/F¢ is

Artinian and such that F4 - F4' C Fit+d’,

More accurately, one should study the Kodaira-Spencer mapping associated not
with the morphism f : (X,z) — (Y,y) but the one coming from the induced
map df : C(X,z) —» C(Y,y) on the tangent cones. This corresponds to the
phenomenon that it is Schlessinger’s T! of the tangent cone C(X,,z) and not
of the fibre X itself, which decides whether X, has tangentially non-flat defor-
mations. But the term “Kodaira-Spencer mapping of df” doesn’t make sense at
first glance, since df is almost never flat, so there is no base change morphism
giving df as a result of base change from a universal family. However, there
are many possibilities to construct induced morphisms analogous to df which
correspond to certain pairs of filtrations on the local rings at z and y, and many
of these filtrations define flat morphisms of cones, hence are suited to construct
a Kodaira-Spencer map. So the problem is to find a canonical pair of such fil-
trations. It turns out that among the filtrations giving flat morphisms of cones
there is a minimal pair, and this is our candidate. Almost nothing is known
about these minimal filtrations currently, and possibly they are rather exotic in
certain cases. So we have to reprove the usual theorems on tangential flatness
(see [He82] and [He91]) for the case of filtered local rings.

Most of these theorems have analogues in the yet more general context of fil-
tered modules as one can see from an early version of this monograph [He92].
Since the module situation is extremely technical, we spent much care to get rid
of it. Up to a few relicts, the present treatment states the results for filtered
local rings where the filtrations satisfy an Artin-Rees type condition. The for-
mulations of the theorems and their proofs are much simpler this way. We hope
this will make the ideas behind them more transparent to the reader. In the
classical (non-filtered) case, the proofs used, as a basic tool, a relative variant
[He91, Proposition (1.6)] of Cohen’s theorem that each complete local ring is
isomorphic to a factor of a formal power series ring. Unfortunately we couldn’t
prove a general filtered version of it. This is finally the reason that we originally
formulated the theorems on filtered tangential flatness in the language of mod-
ules where Cohen factorization translates into the trivial fact that each filtered
module is the homomorphic image of a “tangentially free” one. Since Cohen
factorization is quite useful when dealing with examples, we include a variant
of the theorem for quasi-homogeneous filtrations with positive real weights (see
5.9).

In Chapters 1 to 6 we reprove the elementary part of [He91] (covering [He82]
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and [He83] ) in the new context. Using these results, it is possible to prove also
a generalized version of the main theorem in [He91] characterizing singularities
with tangentially flat deformations in terms of Schlessinger’s T! (or, equivalently,
in terms of the normal module of the fibre with respect to some formal embedding
into a regular scheme). The reader is referred to [Ja90], where this generalized
criterion is proved and used to construct new fibres such that Lech’s inequality
holds.

Chapter 1 contains the most important definitions and a few elementary results
on the filtrations we are dealing with. To motivate the later restriction to Artin-
Rees filtrations of local rings, we give a characterization of these filtrations in
terms of the associated complete rings (see 1.17).

In Chapter 2 we prove variants of well-known lemmas which will be frequently
used later. The material is present mainly for reference purposes. The reader
might skip it and return to it when appropriate.

Chapter 3 is devoted to the fact that tangential flatness is preserved under
surjective base change (see 3.8) and its corollaries. The proofs are along the
lines of M. Brundu’s paper [Br85], where the case of I-adic filtrations is treated.
Further we introduce the basic exact sequence (see 3.14) which is used later to
establish the connection of tangential flatness to Hilbert series, and we spend
some time to prove a kind of inverse (see 3.15) to the base change theorem
3.8. The analogue 4.4 of Brundu’s Main theorem [Br85, see (3.3) and (3.4)] is
proved in the next chapter using arguments essentially different from Brundu’s.
The reason is that we don’t understand Brundu’s argument in the proof of her
Theorem (3.3) claiming that her isomorphism 3 : S ®4 B — T is in fact an
isomorphism of filtered rings. So we decided to chose a different (more difficult)
approach.

In Chapter 5 we introduce the notion of distinguished basis, which is, in some
sense, an analogue in the situation of flat local extensions of the notion of a free
generating set and which gives us the possibility to introduce “structure con-
stants”. The main result 5.8 in this chapter characterizes tangential flatness in
terms of these structure constants. When applied to the versal deformation of a
(local) singularity it says that the set of quasi-homogeneous filtrations (with pos-
itive real weights) having the property that all deformations in an appropriate
filtered category are tangentially flat is a finitely generated convex polyhedron.
Unfortunately this polyhedron seems to depend heavily upon the local embed-
ding of the singularity into a non-singular scheme. Nevertheless we expect that
it will play an important role in the context of Lech’s conjecture.

Chapter 6 relates tangential flatness with properties of Hilbert series. The usual
theorems known from [He82|] are generalized to the filtered case. The proofs
differ somewhat from and are more complicated than the proofs known for the
natural filtrations. One has to avoid certain enumerative arguments comparing
dimensions of vector spaces, which may be infinite in the general case, and has
to work instead with exact sequences. But possibly the deductions are even
more natural now; the results are the same. We have added two easy but useful
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theorems on the composition of tangentially flat morphisms, which we learned
about from late Christer Lech in a private communication.

In Chapter 7 we introduce the notion of flatifying filtration for a homomorphism
of filtered local rings, which is defined as a filtration on the base ring containing
the given filtration and making the given homomorphism tangentially flat. We
prove the existence of a unique minimal flatifying filtration. The hard part of the
proof is to show that this filtration has the Artin-Rees property (see 7.9). As an
interesting side result we get that each naturally filtered flat local homomorphism
becomes tangentially flat by a base change of a very special type (see 7.8).

Schlessinger’s T! and the Kodaira-Spencer mapping are constructed in Chapter
8. The central result here is that the minimality property of a flatifying filtra-
tion implies that an associated Kodaira-Spencer mapping is injective in certain
negative degrees (see 8.13). Contrary to earlier announcements we cannot estab-
lish this result for general local homomorphisms, but must restrict to residually
rational ones. This is finally the reason that our main result 9.2 is valid for resid-
ually separable homomorphisms only. We spend some care to clarify the reason
why we can’t prove the general statement, showing that the Kodaira-Spencer
map is always injective in appropriate degrees when restricted to a certain sub-
space (see 8.13). One interpretation of our difficulties in the general case is that
the minimal flatifying filtration might contain too much information about the
extension of the residue class fields induced by the given morphism f whereas
the Kodaira-Spencer map itself forgets all such information (see 8.9(iv)).

In Chapter 9 we use the results obtained so far to prove inequality (8). In a
first step we establish an inequality of the indicated type with Schlessinger’s T
replaced by data depending upon the minimal flatifying filtration of the given
homomorphism (see 9.1). The final proof of (8) is essentially a comparison of
these data with Schlessinger’s T! based on the injectivity result of Chapter 8.
Since the latter is available only for residually rational homomorphisms, we must
first reduce the proof of (8) to this special case, which is done using a standard
argument of Cohen structure theory. We conclude Chapter 9 with examples
illustrating our result and a list of problems related with Lech’s inequality and
tangential flatness.

The last chapter has the character of an extended example. We study the germ
of the universal family at a fixed point of the Hilbert scheme and describe the
minimal flatifying filtration on the local ring at the given point. We use this
description to give a simplified proof of the main result from [He91] (in the
residually rational case) and to show that the question whether a tangentially
flat homomorphism can be lifted preserving tangential flatness depends upon
finitely many obstructions. Implicitly the considerations of this chapter show
that there is a relation between the minimal flatifying filtration on the local
rings of the Hilbert scheme and the graded structure of these rings introduced
by Pinkham [Pi74] in the homogeneous case. Since this has implications for
Lech’s inequality, we will come back to this point in a later publication.
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Notation

Throughout we use the conventions of commutative algebra as in [Ma86] or
[Bo61]. Local rings will be always considered to be Noetherian.. A local homo-
morphism of local rings is called residually rational, if the induced homomor-
phism of the residue classes is an isomorphism. Similarly, it is called residually
separable, if it induces a separable field extension. Given two submodules N;
and Nj of the module M, we will write

(N1 mod N»)

to denote the canonical image (N; + N2)/N2 C M/N; of Ny in M/N;. The
terminology below will be used frequently, often without any further explanation.

non-negative integers
integers

rational numbers
real numbers
complex numbers

NORONZ

a,b> the scalar product ), axby of the families
a := (ax)rea and b := (by)rea indexed by one
and the same set, where one of the families should
have only finitely many non-zero elements and the
elements of both families are from appropriate rings
or modules such that multiplication and summation
is possible.

Q(A) set of maximal ideals of the ring A

m(A) maximal ideal of the local ring A

La(M) length of the module M over the ring A

MW direct sum of copies of the module M where the
number of copies is equal to the cardinality of the
set A

pa(M) minimum number of generators of the module M
over the ring A

Fg d-th filtration submodule of the filtered module M

M(d) subgroup of homogeneous elements of degree d, if
M is a graded module, or M/F&t! in case M is a
filtered module

M(<Le) direct sum of all homogeneous parts M (d) with
d < e of the graded module M

xvi



NF

ordps(z)

M/\
cl(N)

RB(x)

direct sum of all homogeneous parts M (d) with

d > e of the graded module M

graded module associated with the filtered module
M, see 1.13

same as G(M) where the A-module M is considered
to be filtered with respect to the filtration F' (in
case F is a filtration of M) and FM(in case F is

a filtration of A), respectively. In the second case

F M denotes the filtration of M generated by F', see

1.13
intersection of all filtration submodules of the

filtered module M

= sup{d € N | z € F{,}, the order of the element
in the filtered module M. Sometimes, M will be a
factor module of the module containing . In this
case the symbol denotes the order of the residue
class in M of the element z.

completion of the filtered module M, see 1.16
closure of the submodule N C M in the completion
of the filtered module M, see 1.16

module of syzygies of the family = over the ring B,

see 3.3
Hilbert series of the graded module M or the

filtered ring M = A, see 6.1 and 6.3, respectively.
i-th sum transform of the Hilbert series of the
graded module M or the filtered ring M = A, see
6.1 and 6.3, respectively.

projective N-space over the field K

Hilbert scheme of length n subschemes in PY where
n is a fixed positive integer

the universal family of the Hilbert scheme H
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1.1

1. Ring filtrations

Remark

This chapter contains the most important definitions and a few elementary re-
sults on the filtrations we are going to deal with. Artin-Rees filtrations are
defined in 1.12 and, in the case of local rings, characterized in terms of the
associated complete rings in 1.17(iii).

1.1. Graded rings

A graded ring is defined to be a ring G which admits a direct sum decomposition

G= & G(d)
d=0

into submodules G(d) over the ring GG(0) such that
G(d)-G(d)CGd+d)
for arbitrary d,d’ € N. The elements of G(d) will be called homogeneous of

degree d, and we will write
deg(z) =d

to indicate that € G is homogeneous of degree d, i.e., z € G(d). Note that the
zero element may have any degree. The ideal

is called the irrelevant ideal of G. A graded module over the graded ring G is a
module M over G that decomposes into a direct sum,

(do € Z) of submodules M (d) over G(0) satisfying
G(d)-M(d')C M(d+d)
for arbitrary d € N,d’ € Z. We will use the convention that

G(d) := 0 for d < 0 and M(d) := 0 for d < do.



