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Introduction

The subject of differential geometry has shifted its emphasis in recent
years, largely in response to the demands of mathematical physics. The
situation resembles in some ways the stimulus which general relativity gave
to Riemannian geometry in the first quarter of the century. The main
difference is that the modern approach is essentially global. The integer
invariants of topology, transmuted into ‘charges’ and ‘anomalies’ are
familiar-to a large number of physicists, who now look to the language and
machinery of pure mathematics for the answers to somg of their basic
questions.

This is the background to this book, which rectords the proceedings of
"the Symposium on Global Riemannian Geometry, held at the University
of 'Durham in July 1982. It was designed to reflect the change in the
character of the subject since the first Durham symposium in 1974, and to
~ concentrate on the important new results obtained in the past few years.
-The major themes dealt with are those of the Yang-Mills equations,
~ Einstein metrics; harmonic maps and the relationship between curvature
ang topology. Recent advances in these subjects have been due on the one -
hand to powerful existence theorems in partial differential equations,
notably the work of S. T. Yau, and on the other to the possibility of explicit
constructions based on algebraic geometry, relying on the ideas of R.
Penrose. There has also been a better appreciation of the way in which
curvature and topology are related, especially in the work of M. Gromov
and R. Hamilton.

The interplay of ideas which the symposium provoked is well
represented in this book. They range from black holes to algebraic
geometry, but at heart have a common global differential geometric
viewpoint.

The symposium was supported by the London Mathematical Society and
the organizers wish to thank the LMS, all participants and especially the
contributors to this volume for contributing to such a successful meeting:
We hope the reader acquires from these proceedings a glimpse of the
network of ideas which make up global Riemannian geometry today.

“Nv. J. Hitchin, St. Catherine’s College, Oxford
' T. J. Willmore, University of Durham



Chapter 1

Yang—Millsm Equations

The Yang-Mills equations and the structure of
4-manifolds

M. F. Atiyah
The Mathematical Institute, Oxford University

1. INTRODUCTION

I shall explain here the very recent and striking results of Donaldson [4], in
which the Yang-Mills equations are used to solve a long-standing problem
on the structure of smooth 4-manifolds. Before embarking on this I should
like to make some general remarks about the application of partial
differential equatlons (PDEs) to problems ig. geometry.

In topology one can distinguish broadly between covariant functors such
as homology or homotopy and contravariant functors such as cohomology,
K-theory or more general bundle theory. In applying PDEs to either of
these situations one can see four stages: (1) physical background and
motivation, leading to a particular variational problem and an associated
Euler-Lagrange equation; (2) construction of many explicit solutions,
often involving algebra or algebraic geometry; (3) general existence and
regularity theorems; (4) application of the PDEs to problems in geometry
and topology.

On the covariant side the theory of minimal surfaces is the most familiar
example and it is one that has been extensively reported on at this

symposium. The physical background is classical and comes from soap -

films, while algebraic curves in Kédhler manifolds give natural families of
examples. Existence and regularity have been studied for a long time and
the results now available have enabled Yau and others (cf. Yau’s
contribution in Chapter 3 of this volume) to apply minimal surface theory
as a geometric tool.

On the contravariant side the standard example is the Hodge theory of
harmonic forms, motivated in part by Maxwell’s equations and having
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12 Yang-Mills Equations | [Ch.

important connections with algebraic geometry through the use of Kiahler
metrics. However, the Hodge theory is linear, unlike the theory of minimal
surfaces which is non-linear. In recent years the Yang-Mills equations have
arisen in elementary particle physics and they provide a non-linear theory
of Hodge type. Roughly speaking, whereas Hodge theory relates to
cohomology, Yang-Mills theory relates to G-bundles. The two theoties
overlap when G = U(1) so that the curvature is just a 2-form. Explicit
solutions of the Yang-Mills equations have been extensively studied on R*
where the general solution (the multi-instantons) has been constructed by
algebraic geometry [1]. Also, time-independent solutions on R*, described
as ‘magnetic monopoles’, have been constructed by similar methods [6].
On more general 4-manifolds a general existence theorem has recently
been proved by Taubes [8] and important regularity results have been
established by Uhlenbeck [9, 10].

All this activity was devoted to studying the Yang-—Mills equations for .
their own sake, and most of the motivation came from physics.
. Donaldson’s results, which I'$hall describe shortly, constitute the first case

of the Yang-Mills equations as a geometric tool. In view 6f my general
comments, and the analogy with minimal surfaces, this was perhaps to be
expected sooner or later. What is surprising is the particular way in which
the Yang-Mills equations are used by Donaldson and the beautiful result

- that eventually emerges. In comparing Donaldson’s use of the Yang-Mills
equations with the use of minimal surfaces by Yau and others one crucial
difference should be emphasized. In the minimal surface theory one uses a
single minimal surface (i.e. one solution of the PDEs) as a geometric object.
By contrast Donaldson uses the parameter space of aII solutions of the
Yang-Mills equations as his geometric object.

2. Donaldson’s theorem

Theorem Let X be a compact simply-connected differentiable 4-
manifold and assume the quadratic form on H*(X, Z) is (positive)
definite. Then this is standard, i.e. equivalent over Z to Zx}.

Note The quadratic form depends on a choice of orientation, so there is
no loss of generality in making the definite form positive. Also Poincaré
duality implies that the form is unimodular, i.e. represented by a matrix of
determinant *1.

Arithmetically there are a finite number of unimodular positive definite
" quadratic forms over Z of given rank [7]. Donaldson’s theorem asserts that
only one of these can actually occur as the quadratic form of a smooth X.

An especially interesting case arises when X is a spin manifold. The
quadratic form is then even and clearly by Donaldson’s theorem such an X
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cannot exist unless H* = 0. Arithmetically one knows that the rank must be
a multiple of 8 and for the first few values, namely 8, 16, 24 the number of
quadratic forms is 1, 2, 24, respectively (but for rank 32 it is greater than 8
x 10° [7]). For rank 8 the unique quadratic form is that associated to the
exceptional Lie group Eg: its matrix is

TR L] TERIE:
=1 y2ai1
i 2aEl
Ty R
=1 2e—il mi
S PR o |
il 1OR
e —1 2.1

where all other entries are (0. An old result of Rohlin already tells us that
Eg cannot occur as the quadratic form of a smooth X. The reason is that the
spinor index (i.e. index of the Dirac operator) must be even. However, this
does not exclude Eg @ Eg occurring for a smooth X with H* of rank 16. In
fact much effort over the years has gone into trying to construct precisely
such a 4-manifold. The idea has been to start with a K3 surface (essentially
a quartic algebraic surface in P3(C)) which has a quadratic form

Es@E;®@H®H®H,

where
0 1
#=(; o)
1 0
is the basic hyperbolic form.

Now it is clear that the quadratic form of a connected sum of two
4-manifolds is the direct sum of the two quadratic forms. Conversely, given
X with quadratic form Q, @ Q, one may attempt to decompose X
accordingly as a connected sum X, # X,. If this could be done, starting
with a K3 surface we would end up with X; having Eg @ Ejg as quadratic
form. Needless to say there are geometric obstacles to this process and no
way around them was found despite much ingenuity by Casson, Kirby and
others. We now know, by Donaldson’s theorem, that this process was
inherently doomed to failure.

Although surgery techniques did not work for smooth 4-manifolds, they
have recently been applied successfully in the topological context by
Freedman [5], who has shown that every unimodular quadratic form occurs

as the quadratic form of some topological 4-manifold. This is clearly in
sharp contrast to Donaldson’s result. Moreover, by combining both results
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it can apparently be shown that R* has a non-standard differentiable
structure! (I owe this observation to M. Freedman and R. Kirby.)

3. Method of proof

We begin with an elementary algebraic observation. Let + a; (i = 1,. n)
be the elements of H2(X, Z) with ¢ = 1. Then r < n (the rank of Hz) and
equality holds if and only if the form is standard.

We come now to Donaldson’s brilliant idea. Although the theorem
makes no reference to the Yang-Mills equations, we introduce this as an
auxiliary tool in the following way. We let M be the moduli space of
instantons on X, i.e. M is the parameter space of self-dual Yang-Mills
fields on X with group SU(2) and c; = —1 (definitions will be recalled in
Section 4). Then M has the following properties:

(1) dim M = 5. ‘

(2) M has X as natural boundary (more precisely outside a compact set
M looks like X X R). ™

(3) M is a differentiable manifold except for smgulantles described
below.

(4) There are poigt singularities Ay,..., A, (corresponding to &,..., &;)
which are cones on P,(C).

(5) Other singularities are local complete intersections and can be
deformed away.

(6) M is orientable.

- Granted these properties, if we deform M to eliminate the singularities
in (5), and cut off the cone singularities in (4), we obtain an oriented
cobordism between X and r copies of P,(C). If a of these copies have the
standard orientation and b = r — a have the negative orientation, then the
cobordism invariance of signature shows that

n=sign(X)=a—-b<a+b=r<n.

Hence we must have b = 0 and r = n, proving that the quadratic form is
standard as required.

If we reflect on the nature of Donaldson’s proof we see that the general
instanton (i.e. point of M) ‘interpolates’ between two quite different
* extremes. At one end we have the ideal instantons concentrated at points
of X, while at-the other we have the abelian solutions representing
cohomology classes a with o = 1 (see Section 4). As Roger Penrose has
pointed out to me; this is rather suggestive of a physical system which has
two sorts of limiting situations: a classical one (at points of X) and a
quantum one (given by the linear abelian’ fields).
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4. The Yang-Mills equations

In this section I shall rapidly review the basic definitions of Yang-Mills
theory and I shall discuss in outline how one establishes properties (1)—(6)
of the moduli space.

We fix a principal SU(2)-bundle P over X with ¢; = —k, and consider a.
connection A with curvature F. The Yang-Mills functional is the global
L?-norm of F;

IAE = [, IF? av.

where a Riemannian metric on X has been used to define the local norm
|F|? and the volume element dv. One can then show that we have a lower
bound,

A =

with equality if and only if *F = £ F (the sign depends on the sign of k)
Thus for k = 1, ||F1| is minimized if *F = F (the self-duality equations).
Connections A with self-dual F are called instantons and we identify two
connections which are ‘gauge equivalent’, i.e. which differ by an element
of the group ¥ = Aut P.

To get an idea of the nature of the moduli space M of instantons let us
consider first the infinitesimal theory. We suppose A is a fixed instanton
(giving a point of M) and we look for nearby instantons by linearizing the
self-duality equations around A. This leads us to introduce the elliptic
complex: *

0> QPadP) 3 Q'adP) S @2 (ad P)= 0,

where (ad P) denotes differential g-forms with values in the ad]omt
bundle of P, d, is the skewed covariant derivative (defined by A), &2 is
the (—1)-eigenspace of * and d is obtained from d, by projecting onto
€ . Since (d4)? = F, the condition *F = F asserts precisely that d;d, = 0,
so that we do in fact have a complex. .

The solutions of the linearized problem can then be identified wjith H" of
this complex (the image of d,<” corresponds to infinitesimal gauge
transformations). If H® = H? = 0 then every infinitesimgl solution
generates a genuine solution, so that H' can be identified with the tangent
space to M at A. An index computation [2] then yields a formula for dim
H' = dim M and this proves (1).

If H° = 0 but H? # 0 then M is locally given by the zeros of a quadratlc
function H' — H?. This explains the singularities of type (5). If H® # 0, the
connection reduces to a U(1) subgroup of SU(2) and we have an abelian
solution, i.e. one coming from a line-bundle L. The vector bundle is L @
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L~ "and so c; = —c,(L)?; since c; = —1 this means that ¢(L) = +q; with o/
= 1, Thus the points A,,..., A, of (4) correspond to the abelian solutions
and they are singular cones precisely because, on dividing by the gauge
group ¢ , they have a non-trivial isotropy U(1) group.

The orientability of M (property (6)) is proved by a more refined
application of the index theorem. We need to take any closed loop in M
and then apply the index theorem for real families of elliptic operators
parametrized by a circle [3].

This accounts for all properties except the crucial (2) which connects M
with X. To understand (2) we consider the basic example when X is the
4-sphere. M is then known explicitly and can be identified with the
hyperbolic 5-space, i.e. the interior of the unit ball B° in R®. Moreovyer, this
is naturally acted on by the conformal group SO(5, 1) because the
Yang-Mills functional is actually a conformal invariant. From this we see
that a sequence of points A; € B® which converge to a boundary point x €
§* represent instantons whose curvature converges to a delta function at x.
~ The picture for a general manifold X is qualitatively similar. Thus the
points of X needed to compactify, M appear as ‘delta function curvatures’.

The justification of these statements constitutes the hard technical part
of the proof. It depends heavily on the earlier work of Taubes and
Uhlenbeck. In particular an essential starting point is Taubes’ existence
theorem [8] which asserts that M is ‘non-empty. This requires the
hypothesis that the quadratic form on H*(X, Z) is positive definite.

5. Further comments

It seems likely that Donaldson’s theorem is only the first of many
geometric applications of the Yang-Mills equations. This suggests that a
more systematic study of the moduli spaces M, for higher values of k = —¢,
should be undertaken. In particular one will need an extension of Taubes’
existence th~orem to cover manifolds with indefinite quadratic form. It
seems likely that M, should be non-empty provided that k > dim H>,
where H? is the ‘negative part’ of H” (or equivalently the space of
harmonic 2-forms @ with *w = —w).

Another potentially important problem is to understand how the
topology of M, depends on the choice of metric (or conformal structure)
on X. Whenever H* of the complex in Section 3 vanishes then M, is
non-singular except for the conical singularities A; due to the abelian
solutions. As we vary the metric on X we will occasionally find a non-zero
H*. One would expect this to occur on a codimension one set in the space
of metrics and that, on crossing this set, the topology of M, would be
altered by the attachment of a suitable handle. At present nothing is



