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FOREWORD

The contents of this book are based on lectures given at the Mee
ting on Mathematical Aspects of Finite Eigmeq; Methods, held in Rome,
December 10-12 1975, at the '""Consiglio Nazionale delle Ricerche'" (C.N.R)
organized by the Istituto per le Applicazioni del Calecolo "Mauro Picone”

and Laboratorio di Analisi Numerica-

The subject of this meeting is of particular interest owing to the
importance that the Finite Element Method has in many fields of enginee
ring, not only from the point of view of research but also in the indu
strial routine. It is well known that this method has been developed
by engineers as a concept of structural analysis. |

When there was discovered the connection between the Finite Ele
ment Method and the Ritz-Galerkin-Faedo procedure applied to the spaces
of piecewise polynomial functions, the interest of mathematicians to
this method increased enormously: now, in this field, the interests
and ideas of engineers and mathematicighs converge and overlap and
the cooperation between them has become more and more essential.

To this aim, the Istituto per le Applicazioni del Calcolo '"Mapro
Picone“'(IAC) in. Roma and Laboratorio di Analisi Numerica (LAN) in Pa
via have considered the opportunity of organizing this meeting, by

emphasizing the mathematical aspects of the Finite Element Method.

Twenty-five papers were presented and discussed at the Meeting;
but only twenty-two lectures have been made available for publication

on time |
We should like to conclude by thanking the members of IAC for

their help in the management of the meeting.

e

I. Galligani - E. Magenes

Roma, July 1976



CONTENTS

I. BABUSKA, W. C. RHEINBOLDT: Mathematical Problems of Computa
tional Dec151on$ in the Finite Element Method .....cc0.%.. - 1

C. BAIOCCHI: Estlmatlons d'Erreur dans L® pour les Inéqua
tions 2 ObLStACLe ! 4 fonen P aibiee M e S SIS AT s & o8 4 miwn B

F. BREZZI: Hybrid Method for Fourth Order Elliptic Equations .... 35
G. CAPRIZ: Variational Techniques for the Analysis of a Lubri

cation Problem B WO o AR 1
J. DESCLOUX, N. NASSIF Interior L®™ Estimates for Finite Ele

ment Appr011mat10ns of Solutions of Elliptic Equations..... 56
J. DOUGLAS Jr.: l-l1 Galerkin Methods for a Nonlinear Dirichlet

Problem  ...... B P L TR T i o DR

B. FRAEIJS de VEUBEKE: Discretization of Rotational Equili
brium in the Finite Element Method L R T g,

I. GALLIGANI, D. TRIGIANTE: Integration Techniques for Solving
Algebraic SYStems T I T T S S T R U T T T R T T RS R 113

A. GEORGE, D. R. McINTYRE: On the Application of the Minimum
Degree Algorithm to Finite Element Systems ................ 122

G. GEYMONAT, M. RAOUS: Méthodes d'Eléments Finis en Vlscoela
Sthlté PérIOdlque 8 & % & 8 B F SRR eSS RS AR R E R 150

R. GLOWINSKI, O. PIRONNEAU: On Solving a Mixed Finite Element
ApprOX1mat10n of the Dirichlet Problem for the Biharmo

nic Operator by a "Quasi-Direct" Method and Various Ite
rative Methods  +.uveveennons R 5 e

J. L. LIONS: Sur 1'Approximation de Problémes 2 Frontiére Li
bre dans les Matériaux INhOMOZENES ......eeeeseveneennnsss 194

J. L. MENALDI, E. ROFMAN: Sur les Problémes Variationnels
Noncoércifs et 1'Equation du Transport ol 518 16 8 A I85! § 0w a'e & B, NI

T. MIYOSHI: Application of a Mixed Finite Element Method to a
Nonlinear Problem of Elasticity .......ceeevevccansennsass 210

U. MOSCO: Error Estimates for Some Variational Inequalities ..... 224
J. MOSSINO, R. TEMAN: Certains Problémesnon Linéaires de la

Physique des Plasmas  ........ A T AP O
J. NITSCHE: Lg,- Convergence of Finite Element Approximations.. 261
J.T. ODEN, J.K. LEE: Dual-Mixed Hybrid Finite Element Method
| for Second-Order Elliptic Problems ....cevvesceencenannas &79
P.A. RAVIART, J.M. THOMAS: A Mixed Finite Element Method for

2-nd Order Elliptic Problems ......... R e iei%e o3 ata alis) O
G. SANDER, P. BECKERS: The Influence of the Choice of Conne

ctors in the Finite Element Method 250k s eyals Y sk St AR
V. THOMEE: Some Error Estimates in Galerkin Methods for Para

bolic Equations O o oy R e o T P e e OBD

M. ZLAMAL: Some Superconvergence Results in the Finite Ele
mentMEthOd # & & & & & & & B B & B B & & 8 B B R B B2 R B B " B B & F % % F B " 8 5 & 8 =8 @ @ & 8 @ 353



Mathematical Problems of Computational Decisions
in the Finite Element Method

I. Babu¥ka »

Department of Mathematics and
Institute for Physical Science and Technology
University of Maryland, College Park

and

W. C. Rheinboldt
Computer Science Center
and Department of Mathematics
University of Maryland, College Park

Abstract. Present programs for finite element analysis require the user to make
numerous, critical, a-priori decisions. They often represent difficult mathematical

problems and may influence strongly the accuracy and reliability of the results,

the cost of the computation, and other related factors. This paper discusses some
of these decisions and their mathematical aspects in the case of several typical '
" examples. More specifically, the questions addressed here concern the effect of
different mathematical formulations of the basic problem upon the results, the
influence of the desired accuracy on the efficiency of the process, the selection
and comparison of different types of elements, and, for nonlinear problems, the
choice of efficient methods for solving the resulting finite dimensional equations.
In all cases a consistent use of self-adaptive techniques is strongly indicated.

Acknowledgment. This work was supported in part under Grant AT(40-1)-3443 from

the U.S, Energy Research and Development Administration and Grant GJ-35568X from the
National Science Foundation.
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1. Introduction

The finite elément method has advanced rapidly in the past two decades. The
most far-reaching progress probably occurred in the practical application of the
method in various fields and especially in continuum mechanics. Numerous, often
large, general and special-purpose programs for finite element analysis have been
built and are widely applied to increasingly complex problems (see, e.g., . [1]).

The mathematical analysis of the method began somewhat later but is also pro-
gressing at a quick pace. Without question, the method has now been placed on a
firm mathematical foundation.

However, in looking over these advances, it is surprising to notice the rela-
tively weak interaction between the mathematical progress and the practical applica-
tion of the finite element method. Often, in practice, the method is not interpreted
as an approximate solution process of a differential equation of, say, continuum
mechanics. On the other hand, the theoretical analysis has principally addressed
the mathematical basis of the method and of the related approximation problems. There
appears to be an urgent need to extend now this theoretical analysis to all phases of
the solution process and their interactions. This involves the selection of the



mathematical formulation of the original problem and the characterization of the
desired type of solution. It also includes the variety of questions about the
numerical procedures and last, but not least, the many computer science problems
arising in the overall implementation.

Today's finite element programs require the user to make numerous, very criti-

- cal, a-priori decisions which, in fact, often represent difficult mathematical ques-
tions. This includes decisions about the mathematical model, as, for example,
whether a plate or shell may be considered thin, or whether nonlinear behavior may
be disregarded. It also includes the questions of the selection of the elements and
the meshes, the specification of the time steps and of various other process para-
meters, as well as the decisions when updates or refinements are to be used, etc.
The architecture of all present--and probably many of the future--programs incorpor-
ates the need for all these options. Any of the decisions required from the user
may influence strongly the accuracy of his results, the cost of the computation, and
so on. It appears that only a consistent use of self-adaptive techniques can signir
ficantly alter this situation. _

The matheématical problems involved in all this are wide-rangﬁlg, and in part,
novel in nature, especially when it comes to the computer science questions. Some
starting points for such studies may well be the many questions raised by the often-
startling results reported by experienced practitioners of the finite element method.
Our aim here is to delineate some such questions for several typical examples. More
specifically, in Section 2 we show the effect of different formulations of the basic:
mathematical problem upon the results. Then Section 3 addresses the influence of the
desired accuracy of the solution upon the efficiency of the solution process and the
need for further types of asymptotic analyses. Section 4 considers some aspects
related to the theoretical comparison of different types of elements, and finally
Section 5 shows that, especially in the nonlinear case, the methods for solving the

resulting finite dimensional equations depend once again strongly on the selection
of the mathematical formulation of the problem.

2. Formulation of the Mathematical Model

Most physical problems may be formulated mathematically in a variety of more or
less simplified forms, and a numerical method applied to any one such mathematical
model introduces a further transformation. Clearly, a principal mathematical ques-
tion mu_st.be the analysis and estimation of the errors resulting from the various
simplifications and transformations., This, however, requires a decision as to
which formulation is to be considered as the reference model. Here, usually, atten-
tion is only focused on the approximation errors introduced by the numerical method,
althmghl sometimes these errors are much smaller than those caused by earlier simpli-
fications of an original mathematical model.

This situation arises, in particular, in continuum mechanics where_ theoreig.fggl
advances now allow for the fornulation of very general mathematical mde‘lss',l_!_.l :

TG PR R




of their complexity, numerical procedures are in most cases only applied to consider-
ably simplified formulations which then are also used as the reference models in the
error analysis. In this section we illustrate how much we may have to adjust our
‘assessment of the numerical results, if some of the earlier simplifications are taken
into account.

As an example, we consider a bending analysis of a simply supported plate for
which either a two- or three-dimensional formulation may be used. Let & © R2 denote
the (compact and Lipschitzian) domain of the plate and d its thickness. The ma-
terial is assumed to be homogeneous and isotrop with Young's modulus E and, for
simplicity, Poisson's ratio o = 0.

The three-dimensional formulation involves the solution of a system of strongly
elliptic equations for the unknown vector u = (u;,u,,u,) on |

(@1 9 = {00y5%p5%3) €R5 (x,%)) € 2, [x5] < Sy

subject to certain boundary conditions on a%;. In its weak form this boundary value
problem requires the determination of

1'11‘ ¢ H- (szd), u, € Hl(gd) - [0] (szd)
such that
CLAE '
ORI IR Yo e Pl e S ALP OOV LOPRL
d 1, 1 k Q
holds for any

" ¢ H' @), v, €H'@y), vy € Hl(@y).

Here f ¢ L, () is given, H (Qd) denotes the usual Sobolev space and
d
[U] (24) = {u € HE ®y) | u) = o, (x;aX,) € 32, |x5] < 7l

The two-dimensional fonmlatmn leads to the well-known (see, e.g., [2],[3])
bihamonic problem of finding w € H'(2) N H(2) such that

3 2 2 2
Edj awav,, azw azv +.':32waw.r
17 S 3 — =7 dx]dx
% ,:ax1 3X, o i Ko7 D 3X, ax, ;

(2.3)

- Jv f dx,dx,, ¥ v € H: (@) N H'é(ﬂ)

Physically, we expect that approximately w(xl,xz) = us(xl,xz,{)) for (xl,xz) € Q. The‘
formulation (2.3) may be derived from (2.2) by requiring that u (and corresponding-
ly v) satisfies

(2.4) = A

e T axl = ax;, e
that is, by restricting the space H1 (Qd) Accordingly, the finite element method
for (2.3) may be interpreted as a method for (2.2) with special elements which incor-



porate two ''small'' parameters, namely, the size h of the elements in the X1 2Xy"
directions, and the thickness d with d <<'h, in most cases.

A direct three-dimensional finite element solution of (2.2) is most likely in-
efficient for small d. At the same time, (2.4) is certainly not the only possible
restriction. For example, we may use

u, (xl »Xq rx3) ' 'x3‘P1 (xl axz)
(2.5) Uy Oy sXgsX3) = X530, (X1 %))
us(xlslexs) - '¢3(x1:x2) ’

where now 91299 € Hl(sg), 93 € Htl)(g). This leads to a system of three equations of
second order involving a small parameter, in contrast to the one equation of fourth
order in the case'of (2.4) without such a small parameter. Hence, the finite element
discretization may now involve Co-elﬂnents, instead of the Cl—elanents needed before.
Of course, the design of the elements has to account for the small parameter (d).

A direct use of, say, piecewise linear elements would lead to very inaccurate results
when d << h is small.

However, there is a significant difference between the restrictions (2.4) and
(2.5), namely, their dependence upon the domain. Let B c R2 be the open unit ball
in Ft2 and B" c B, n = 3, the regular n-sided (open) polygon inscribed in B. The
corresponding three-dimensional domain Bd 1s defined as in (2.1). Then we have the
following result for (2.2).

Theorem 2.1: Let u and u(n) denote the solutions of (2.2) (mth f E L (R)) for

——

R =Band @ = Bn, respectively. Then lim u(n) u 1nH (D) x H (D) x H (0) for any
1 e

compact D c Bye
On the other hand, for (2.3), that is, the restriction (2.4) of (2.2), the fol-

lowing theorem holds:

Theorem 2.2: Let w and W@ be the solutions of (2.3) (with f a 1) for = B

and @ = Bn, respectively. Then

R ! 4 3 2. 4 2 212
lim w -W=—5—(3-4r +r), (T -x]+x)
e 16d"E ’ e

in HZ(D) for any compact D ¢ B, and =~

—;E(SGI' )1'"

This result was proved in [4] (see also [5], [6]) and its meaning discussed in
various papers (see, e.g., [7]) under the name "'Babu¥ka's paradox."

In the case of the two-dimensional problem (2.2)/(2.5), obtained from (2.2) by
applymg the restriction (2. 5),we have once again a result of the type of Theorem 2.1

(see [8]).



Theorem 2.3: Let u and g(n) be the solutions of the two-dimensional problem
(2.2)/(2.5) (with f ¢ LZ(Q)) for R = Band Q = Bn, respectively. Then lim u(n) = u
on HI(D) X Hl(D) x Hl(D) for any compact D c By -7 28

The questions discussed here belong to the general range of problems of dimen-
sion reduction. There exists a large literature in this area especially for problems
related to plates and shells. We mention here, for instance, [9], [10], [11], [12],
[33], [34], [35], [36], [37], where additional references may be found. It should be
noted, however, that all these presentations assume a smooth solution and hence can-
not distinguish between the reductions (2.4) and (2.5) that led to the Theorems 2.1
and 2.2.

Some of the results of these three theorems may be summarized as follows:

(1) For small d and © = B the formulations (2.2),(2.3), and (2.2)/(2.5) essential-
ly give the same results. However, if & has corners, as does Bn, then, even for
large n, the results for (2.3) may be very different from those of (2.2) and (2.2)/
(2.5) if h is small.

(2) In order to overcome the effect of Theorem 2.2 we may combine (2.4) and
(2.5). More specifically, (2.5) is used in a neighborhood of the boundary and (2.4)
elsewhere in the domain. Of course, in doing so we need to take account of the fact
that d << h.

(3) The restriction (2.5) may be generalized to include higher order polynomials
in X;. This may be desirable when d is not sufficiently small and the resulting
two-dimensional formulations are still less costly to solve than (2.2).

(4) Dimensional reduction may be treated as a special selection principle for
the elements. Asymptotic analysis alone is insufficient to determine the influence
of this type of reduction upon the solution. It is an open ‘question how these pro-
blems may be approathed theoretically. From a computational viewpoint, the only
realistic way may be the use of self-adaptive techniques.

Although we discussed here only one particular example, it should be evident
that similar situations may arise in connection with various other problems.  We
certainly encounter them in shell theory, but analogous questions also occur, for
instance, when linearizations are introduced. In practice, the decision about the
choice of the specific mathematical model is almost entirely left up to "experience".
There appears to be a need for new theoretical and computational approaches.

3. Accuracy and Asymptotic Behavior

In practical applications of the finite element method, the accuracy required
of the solution is rarely very high; in fact, an error of 10-20% is often fully
acceptable. This means that the standard asymptotic error analysis may not provide
us with sufficient insight. Since asymptotic approaches are hardly to be avoided,
this suggests that we should consider a variety of different asymptotic analyses for

characterizing more completely the computational process.
As an example, we consider a simple version of a type of problem occurring in




reactor computations in the presence of interfaces. More specifically, let the
following boundary value problem be given:-

2 ad)+(a2-) =1, ¥ (x1,%,) €8

B A R s R+ A2

(3.1a)
u=0on ax

where

R s 2 1 1
(3.1b) 2= {lxppxy) €RG x| < 7, |x5] < 7}
and

- . 1 1
Tl = & oan {(xl,xz), 0<x1<-2-, 0-::12-:7}
long@ - Ql

il

The solution has a singularity of the type rP ¢(6) at the originl) with B and ¢
depending on ¢. For an analysis of the solution of such interface problems, see
[13] and [14].

Singularities of this type influence considerably the convergence of the finite
element or finite difference methods. We refer to [15], [16], [17], and [18] for
thorough studies of these problems. Suppose that a regular triangular finite element

mesh with grid size h is used, as shown in Figure 3.1. Theoretically, the error
then satisfies

+
lell, = chP*®,

with arbitrary ¢ > 0, and this result is independent of the order of the elements.

e

Figure 3.1

jjl-lere,, and further below, r and 6 represent polar coordinates.



However, this error behavior has not been observed in reactor computations. In the
case of problem (3.1), the experimentally-observed rate of convergence for 1% accur-
acy as a function of & is indicated in Figure 3.2. For small & > 1 the rate of
convergence is better than the expected asymptotic value a(®) < 1; while for large
$ it essentially equals the predicted rate. The reason is that for small % the
effect of the singularity is negligible in comparison to the desired 1% accuracy.
The higher the required accuracy, the more the effect of the singularity becomes
visible.

SRS

W T P e e o R
DI 17 (RN [ Ry N .
T ) 1) s 2T e v
, T TR R TR T R e

AR o R NS O
B 8 D e smevesn moe . el
E IR Ml BT BT
-IIII--

[V ©'

‘-—-

Figure 3.2

Generally, when a singularity of this type 1s present, it is known that for a
regular mesh its effect on the accuracy will be felt throughout the region, and not
just in some neighborhood. On the other hand, it has been shown (see, e.g., [19])
that there exist refinements of the mesh such that the resulting rate of convergence
is the same as if no singularity were present.

These observations together indicate that for efficient computation a mesh
should be constructed which incorporates a proper degree of refinement commensurate
with the effect of the singularity at the desired accuracy. Such a mesh can hardly
be designed a priori; instead, it must be evolved adaptively during the course of
the computation.

In [20] (see also [21]) a procedure has been described for such a self-adaptive
mesh refinement. More specifically we considered the numerical solution of the Dirich-
let problem for Laplace's equation on an L-shaped domain (see Figure 3.3). The Dirich-
let boundary conditions were chosen such that the exact solution has the form

(3.2) u= ar2/3 sin 2/3 o + vepxl cos ﬁxz .



A piecewise regular triangular mesh was used analogous to that shown in Figure 3.1.

+1} X2
= T e
I
-l
Figure 3.3

Some commtaiional results with the procedure are given in Figure 3.4 for three dif-
ferent sets of the parameters a,B,y in (3.2) and tolerance T = 0.050. Every

]

a=lo v+005 a*1.o v=003
g0 p=10
rlo r'l;ﬂ

a=0 v+005

Figure 3.4




square represents here a block of 32 equally sized triangles. Figure 3.5 shows the
dependence of the error in the C-norm on the number of unknowns N (that is, the
number of nodal points) obtained for different tolerances <. The dashed lines
correspond to the use of a regular mesh while the solid lines give the results ob-
tained with the adaptive mesh generator. The behavior is analogous when the L,-nomm
or the Hl-nor'm is used. It is interesting that before the onset of the asymptotic
behavior the rate of convergence is actually better than its theoretical, asymptotic
bound. The explanation is that far from the singularity the mesh is already much
too fine for the desired accuracy. Therefore local refinements around the corner,
which increase only moderately the mumber of unknowns, provide for a large increase
in accuracy.

NEEE

REGULAR

REFINED ﬂESH i
0.005 }—
SLOPE N~ ‘
0.002

0.001
20

ERROR li-llg

100 200 500 1000

NUMBER OF UNKNOWNS N
CASE a=L0, B=0, y=0

Figure 3.5

Studies of this type suggest the following conclusions:

(1) For efficient computations the finite element mesh should correspond to the |
desired accuracy. In any a-priori construction of the mesh it is difficult, if not
impossible, to avoid over- or under-refinements in some parts of the domain resulting
in decreased efficiency or accuracy or both.

(2) A self-adaptive procedure should be based on some asymptotic analysis. In
our case, the behavior for v -+ 0 was used, and the numerical experiments .in;dicate
that the results of this type of analysis may have a wider range of applicability
than those of the standard asymptotic analysis in terms of element size.

(3) The accuracies used in the computations were relatively' high and are probably
not achieved in practical problems. This indicates that the discrepancy between the
predictions of today's asymptotic theories and the results of practical computations -
should be larger than those shown here. -
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(4) Any self-adaptive mesh-refinement procedure depends critically on the com-
plexity of the data structures it entails. There appears to be considerable need
for studies of the data management -prbblans of such mesh-refinements.

(5) For large problems in which the size and structure of the elements is sig-
nificantly influenced by the geometry, the question remains how to obtain reasonable
estimates of the reliability of computational results. Once again asymptotic re-
sults are needed here, since rigorous and realistic a-posteriorl estimates are not
likely to be obtainable. Some mathematical problems related to this question are
addressed in the next section.

(6) In problem (3.1) the coefficient function was assumed to be constant inside
the two subdomains 91 and @ - Ql. 1f, say, (3.1) represents a torsion problem,
then u is the stress function and a describes the constitutive law. In this
case, a theoretically better formulation requires a to be a function of grad u,
and since grad u is:.very large near the singularity, a linear constitutive law is
clearly unacceptable there. Let Uy and Uy be the exact solutions of the nonlinear
and the linearized problem. We analyzed the error e(h) = U - uL(h) between u, and
the approximate solution of the linearized problem. This analysis remains relevant
for the nonlinear problem only where uy .y is smaller than e(h). Once again an
adaptive approach is needed here to decide where the linearization may be used.

4. Problems of Element Selection

A major question in the implementation of the finite element method is the b;st
selection of the elements, that is, their shape, order, and use within the subdivi-
sion of the given domain. Extensive theoretical results are available about various
element types, their properties, and influence upon the convergence, etc. But there
are many other factors which need to enter into consideration. For instance, we
should take account of the complexity of the input problem--a most laborious part of
the method.

Practical experience has generated many opinions about the performance of dif-
ferent elements, and many articles have been devoted to experimental results on this
topic. For example, it is widely agreed that the square bilinear element in Rz
performs slightly better than the corresponding square constructed of two triangular
linear elements. |

The pérfomance of an element differs with the context and we should distinguish
whether the element is used (i) in the interior of the domain, (ii) at its boundary,
or (iii) in the presence of irregularities such as singularities, etc. We shall
restrict ourselves here to some results about case (i), although some of the ideas
are easily generalized to (ii). The third category (iii) requires special approaches
(see, e.g., [18]).

Recent results [22], [23], and [24] about interior estimates for elliptic equa-
tions show that the error has two essential parts, a global and a local one, The

global error is well understood and is generally of higher order than the local one.
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Hence different elements of the same order have to be compared in terms of their
local performance.

For computational ease there is good reason for the elements to be distributed
locally regularly. Under this assumption, we may concentrate on the performance of
meshes in R" with translation properties. As an example, we present an analysis
of a simple case which lends itself easily to considerable generalizations.

We denote by l-l'k = Hk(RZ) the standard Sobolev space over Rz, and assume that

its nom is written in the fomm

2 2 R
(4.1) hull 5 = Iz | Fu|“(1+ (x7+x3))
R -
where F is the Fourier transform of u. Let Sh = H t 2 0, be a family of Eum:

tions depending on the real parameter h € [h0 h1] Then, for any two spaces H 1 ,H k2
with k kl and t = lclll we define the approximation ‘bound
4 o

(4.2) o 1,H 4,5) = sup [u-Pyul K
H

[lullyk =1
where Ph is the orthogonal projection (in the sense of Hkl) of Hkl onto Sh
It allows for a comparison of different sets S [1] S]!l ] over the same parameter

interval h0 <hgs h._l More specifically, we call 5[1] _superior to S}Ez] with

respecttoHlﬂz if

o

o

5

4.3) & (H kl kz. 2l

ol <

In the case of equality, the sets are said to be equivalent with respect to the two
spaces. e
As examples, we consider the sets:
(1) S}[II], the space of continuous, piecewise bilinear functions on sduares of
size h as shown in Figure 4.1;

jom

Figg_ e 4.1

(1i) S]EZ]’ the space of continuous, piecewise linear functions on right tri-
angles as shown in Figure 4.2;
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(ii1) S!), the space of continuous, piecewise linear functions on triangles as
shown in Figure 4.3.

|

Figure 4.3

All three spaces have the same density of nodal points. They represent so-
called S;’k-spaces (see, e.g., [25]) witht =2, k=3/2 - ¢, and any ¢ > 0. Then
for any pair kl < kz, kl < k we have

(4.4) @(l-lkl,nkz,sﬁ'k) < coci,kz,sltl’k)h”. p = min(ky-k,,t-k;) .
This suggests in our case the definition
@9 yELaL8) < whem Lu 2, 1 = 1,23, 4 = minloqkg, 2k,

Now we have the following comparison result: K
Theorem 4.1: The set S}E” is superior to 2] with respect to I-l:l and H 2,
kz > 1, on the parameter i.n.Eerval 0 <h=1. The set S]EI] is equivalent to 8}[131
with respect to Hl and H 2, kz > 1, on the same interval 0 < h = 1.

Table 1 below gives some values of the functions ¢ of (4.5) for i = 1,2. All
numbers are rounded to two digits.



