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PREFACE

The composition and writing of these Lecture Notes arose from the
realization of two facts. The first one is, that the approach of the
fiftieth birthday of W. Eckhaus makes this an appropriate occasion to
provide a collection of papers written by a number of mathematicians
who were at some stage 'his students'. The papers in this book are
dedicated to W. Eckhaus who has been a versatile and influential
applied mathematician, working in the United States of America, in
France and in the Netherlands. He has contributed fundamentally in
the field of non-linear stability theory of partial differential
equations, asymptotic analysis and several other branches of applied
analysis. The field of asymptotic analysis especially ;ttracted many
young mathematicians in the Netherlands with as a result a rapid and
varied development of the theory.

This leads us to the second fact. Asymptotic analysis arose from now
classical theories in celestial mechanics and fluid mechanics. The
flourishing of asymptotics during the last ten years, however, took
place within the discipline of applied mathematics and there is an
understandable lag in the application of these new theories. One ex-
pects the subtleties of matching conditions or the estimation theory
by Hilbert-space methods to take some time before being applied in the
physical sciences. The realization of this second fact has provided
the main idea behind the writing of most of the papers in this book:
to show that asymptotic analysis as a branch of mathematics can be
applied to develop new theories in such varied fields as biology,
plasmaphysics, celestial mechanics, Hamiltonian mechanics, the theory
of ocean currents etc. It is in this dynamic sense that the contents
of the book should reflect the title.

F. Verhulst
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ON MATCHING PRINCIPLES

J. Mauss
Laboratoire de Mécanique
U.E.R. de Mathématiques
Université Paul Sabatier

Toulouse - France

SUMMARY

Matching principles are the key of asymptotic analysis for singular
perturbation problems. Starting with some classical definitions in
asymptotics we recall the principal results which have been obtained
to match asymptotic expansions of a singular function; these classical
results are based on Kaplun's extension theorem. After Kaplun and
Fraenkel, most of the results are from W. Eckhaus; in fact, he was the
first to say clearly that matching is not actually a consequence of
overlapping. Following all these ideas, we discuss some theorems and
rules which involve matching and try to explore some new ideas with
the help of simple examples and counter-examples.

INTRODUCTION

The techniques of matching, which have been proposed to yield a
relationship between expansions in a small parameter € of a singular
function ¢(x,e), are very important to determine unknown constants or
functions occurring in these expansions.

At the beginning of the work on the foundations of matching processes, we
find S. Kaplun and P.A. Lagerstrom [4] and W.Eckhaus [3] who try o develop
a systematic approach of matching. One way to find some rules is to

make the overlap hypothesis; using intermediate variables Kaplun makes
the assumption that there exists extended domains of validity for the
so-called inner and outer expansion.

Nevertheless, in practice, it is quite useful to get matching rules

in a more simple way. As L.E. Fraenkel [4] stated it, the techniques
which use the idea of overlapping are often difficult and laborious.
When M.D. van Dyke [2] stated his matching rule he thought this to be

in the spirit of Kaplun's work; his matching principle is very simple

in applications but unfortunately it is not always correct.

Using the ideas of W. Eckhaus [3,6,8] to whom this paper has been
dedicated, we try to show heuristically how Van Dyke's matching rule
appears to be the best one if we use it in a form written down by

W. Eckhaus.



ASYMPTOTIC DEFINITIONS

Let ¢(x,e) be a function of the real variable x and the real parameter
, 0 < g <
where B, and €, are positive constants. We suppose that this function

€ defined in a bounded closed domain D : 0 < x < B0 €9
is regular everywhere except in the neighbourhood of the origin x = 0
for € ¥+ 0.

Thus, there exists a regular expansion of ¢(x,e) in A, < x < B, where

0
Ay is a strictly positive constant:

m
(1) o(x,e) = 5éP)(e)¢éP)<x> + o(si™y;
p=0

the Sép) are order functions such that

aép+1) = o(6ép)) , Vp = 0,1,2,...

In general such a limit process as € + 0 is non uniform in the whole
domain DP; the function ¢ is said to be singular at the origin. To
study asymptotic expansions of type (1) near x = 0, we introduce local
variables,

X, = = with Gv(e) = o(1) except SO(E) = 1.

v 8,(e)

(Thus, we have in this notation x = xo).

After this so-called stretching transformation, we assume the exis-
tence of local regular expansions in Dv DA, < X, < B, where A =~ and
B, are positive constants,

Vv
> < (p) (p) (m)
(2) o(x,e) = I 8;PM(ere, Plix) + o8,
p=0
where of course 5§p+1) = o(Gsp)) vV p.

We now use a shorthand notation defining expansion operators as
introduced by Eckhaus [6,8].
If 5(m) is an element of a pre-assigned set of order functions, the

(m)

expansion operator Ev is such that,

(m),  _ (m), .
(3) ¢ - Ev ¢ = o(6 ) in X, E(Av,B\’).
Then, the expansion operator has the representation,
v(m) . (p) (p)
> dv (e)¢v (xv),
p=0

(m), _
(4) Ev ¢ =



where v(m) is an integer depending on m. This is done to introduce the

possibility of cutting the expansion (2) at any pre-assigned order
5 (m) (m) _ g (m)

For instance, if for fixed v, we choose § v

, we get
v(m) = m.

Nevertheless, we keep also the notation,

(m), _ 2 (p) (p)
(5) E, "¢ = ? 8, (€)¢v (xv),
p=0
such that,
(m), _ (m)
(3! ¢ - E;7¢ = o(6v Y

There is no .possibility for a mistake since to get (3) and (4) we
(m)

must start with defining the set Gv .

A CONSEQUENCE OF THE EXTENSION THEOREM

The process which relates expansion operators E(m)

to each other is
called matching. This process can take various ¥orms; one of them

is the so-called extension theorem of S. Kaplun [1]. This theorem
asserts that the domain of uniform convergence of ¢ can, in a sense,
be extended to include the origin.

A consequence of this is the following theorem, the proof of which can
be found in Eckhaus [3].

(0)

Theorem 1. Let Ev (

¢ and Ev
1 *
there exists and order func%ion § = o(l) such that, <If

§

v
*

§ < —2 << 1, then, for § such that § K5 K6 , we have,

6v ’ U Yo H V4

1

0)¢ be two local asymptotic approximations,

(0).(0), _ ~(0) _ »(0).(0)
Eu ]—3\)1 ¢ = Ep ¢ = Bu Evz ¢.

This theorem has some importance; it means that we have matching if
the two local approximations are sufficiently near to each other. It
is the basis of overlapping using intermediate approximations. But
one must be very cautious when using such a theorem. In practice, the
set of stretching order functions Sv is not large enough to apply the
result. For instance, if we consider the function

X
- 1 e €
¢$(x,e) = Togx | Toge
with the classical set €’ (v = 0), putting
_ X
Xy T F 0 we get
v
-,
(0), _ 1 (0), _ 1 (0), _ 1+e
Eg 7o = logx’ Ey 7o = vloge ° Ey7e = loge



Now, if the theorem would apply, there would exist a p < 1 such that

1. g(0);00)

(0) 1
g ¥ 3B

H ¢ = uloge

loge !

so, we get u = 1 which contradicts the hypothesis u < 1. This
illustrates one of the reasons to get a rule as Van Dyke's one [ 2]
which is independent of the subset chosen for the stretching order
functions. In fact, Van Dyke's rule works perfectly in this case:
(0)(0) _ (o). (0), _ 1
Ej "Bg "¢ = Eg "By 0 7 1ogee
ASYMPTOTIC MATCHING RULE WITH OVERLAPPING

We shall now discuss a very important theorem of W. Eckhaus [8] which
shows that the overlap hypothesis implies the validity of a generalized
asymptotic matching principle.

We choose the special subset e’ for the set of stretching order
functions; this is a very usual choice if one tries to find a prac-
tical matching principle. v = 0 now defines the classical outer

expansion Eém)¢’ and v = 1, the inner expansion E;m)¢.

Theorem 2. If for 0 < v < 1, we have

¢ - Eém)¢ = o(e™Y)

for all m = 1,2,... where Yy is an arbitrarily small positive number
and ©f we have overlapping, that is, for any integer s, there exist
integers m and n for which,

(m) (s)p(n) g(s)

(s) _ -
(6) Ev EO ¢ = Ev 1 ¢ = v 9,
then, for any integer s,
(s).(s), _ L(s).(s)
(7) EO E1 o = E1 EO ¢ .
(m) (m)

In this theorem, EO ¢ and E1 ¢ belong to what Eckhaus calls "a normal
class of expansions". This means that expansion operators are supposed
to be regularizing operators in such a way that functions as ¢ép)(x)

can be written as a sum of terms of the type xT(log X)O; in applications
this is not a severe restriction.

Also, the special choice of ™Y

shows that truncating expansions
between logarithms is impossible and thus, we have to pay attention
when using this theorem. In [8], one can find an example from Fraenkel
[4] which clearly shows that if Van Dyke's rule is wrong, theorem 2
indicates the correct way to match. One should also note that cutting
all expansions, outer, inner and intermediate, at the same order,is a
very good idea as we shall see later; moreover, in practice, this is

easier in constructing a composite expansion.



ASYMPTOTIC MATCHING RULE WITHOUT OVERLAPPING.

As suggested by W. Eckhaus [8] and also by Fraenkel [4], overlap

is not a necessary prerequisite for the validity of an asymptotic
matching principle. Most of the people working with singular
perturbations appear to think exactly the opposite [2,5]. Nevertheless
a few things have been done in this way [7], but only for first order
matching.

In the following, we want to give some simple examples which will help

us to understand why overlapping is not necessary to get a matching rule.

Outer Overlapping.

We assume that, for v < 1, for all s, there exists m such that

(8) E(s)¢ _ (s) (m)¢,

v \)

but, for v = 1, this is not possible. This means that if for v < 1, the
intermediate expansion ESS)¢ is contained in the outer expansion, this
is not the case for the inner expansion which is, in a sense, a signi-
ficant expansion. The process described here is a very classical one
for users; we shall call it outer overlapping. If all expansions are

taken at the same order we propose the special matching,

(). (s).(s), _ ~(s).(s)
(9) EV El EO ¢ = EV E1 ¢

v <1,
with the rule

EéS)B(S)E(S) (S)E(S)

In that case, a composite expansion is given by

(11) & = (s)¢ + E§8)¢ _ gs) (s)¢ + 0(6( ))_
.
1 e €
Example 1. ¢(x,e) = Togx + Toge "
(m), _ 1
Eg 7o = logx’ vm
(3)¢ _ 1 _ lOng
v vloge Vz(logg)z
-x
(83, _ dve - LOBR,
R i oy 2
& (loge)
Evidently (8) holds good. In fact, we have
logx
(3) (3) (3) 2-v v _ =(3).(3)
Ey Eq ® = Toge 7 7 By B¢

(loge)



and the rule,

(3).(3).(3), _ (3).(3), _ 2 _ logx
Eg "Ey "Eg "¢ = Eg B¢ = 155e -

(loge)2

For this illustrative example we took the order 3 but it is true for
any s. This was demonstrated in [7] for the order 1 on the basis of
the continuity of order functions. The composite expansion is the

function itself.

Inner Overlapping

In the same way, for v > 0, for all s, we assume that there existsa

number n such that,

(s), _ ~(s)_(n)
(12) Ev ¢ = Ev E1 ¢.
However, for v = 0 this is not possible. In that case, the inner

expansion is containing the intermediate expansion; we shall call this
inner overlapping. As in the preceding case, if all expansion operators

are taken at the same order, we propose

(s) (s) (s), _ ~(s).(s)
9 O 1 ¢ = E E ¢ v >0

(13) E v 0

with the rule

(14) Eis)Eés)E(s) - E(s)E(s)

1 ¢ = Ej EgT6.

In that case, a composite expansion is given by

(15) 8 = (s)¢ 4 E§5)¢ _ és) (s)¢ + 0(s¢s)y,
1
Example 2. ¢(x,€) = 1553 Togev1
(3), _ 1 1+logx
E77¢ = -
0 loge (loge)z,
(3)¢ ] 1 ] 1+logx,
v (1-v)loge (1-v)2(1og€)2
(m) _ 1
Eq T 1+logx, ° vm

1

Now (12) holds good and we can apply (13,14,15).

1+logx
E(S)E(S)E(S)¢ I AV Vo E(3)E(3)¢
v 0 1 loge (loge)z v 0
and, for v = 1, we get the rule
L(3)g (3) (3) C((3), _ 2 Arlogy,
Eq ¢ = E.7By¢ = -oge - 2"
€ (loge)



As in the preceding case, (15), the composite expansion is the function
¢ itself.

No overlapping.

In the two cases of semi overlapping, one should note that the composite
expansions (11) and (15) are essentially different. However, as in the
examples 1 and 2, it was not possible to find a counter example where,
(s)p(s) (s)p(s)
0 1 1 0o -
Thus, it is easy, by composition of these two cases, to construct a

in one of the preceding cases,E was different of E

function ¢(x,e) where there is no overlapping at all and it is easy to
understand why a matching rule is going to work. This situation has

been studied in [7] and the example was treated in [8]:
x

1 e € 1

logx * loge * logx-loge+1~

d(x,e) =

In this last case, it is very clear that there is no overlapping but

the intermediate expansion is contained partly in the outer expansion,
partly in the inner approximation. Finally, it is easy to construct an
example where this is not the case so that we have no overlapping and

no matching rule:

1 log(x+e)
Example 3. ¢(x,e) = ~ + 3
logx-loge+1 (loge)2
it is not difficult to compute,
(2).(2) _ (2).(2) _ _ 1
ED E1 = 0 and El EO = “Toge"

0f course, we are cutting expansions between logarithms but there is
still some work to do in this field. Moreover, since Theorem 2 of
W. Eckhaus [8] is the best one we know, we have shown now that the
conditions stated there for certain applications are too restrictive.
A rather elaborate analysis of all these problems can be found in [ 9]

and more can be expected in the future.
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SINGULAR PERTURBATIONS OF SPECTRA

by

P.P.N. de Groen
department of mathematics
Eindhoven University of Technology
Eindhoven, The Netherlands

ABSTRACT

A mathematical description of free vibrations of a membrane leads to
eigenvalue problems for elliptic differential operators containing a small
positive parameter e in the highest order part. The asymptotic behaviour
(for € - +0) of the eigenvalues is studied in second order problems that
reduce to zero-th and first order for € = 0 and in a fourth order problem
that reduces to an elliptic problem of second order. In the case of reduc—
tionto zero—th order the density of the eigenvalues on a half-axis grows be-
yond bound and is proportional to &% (in n dimensions). In the case of
reduction to first order the relation between the asymptotic behaviour of
the spectrum and the critical points of the reduced operator is shown. In
the case of reduction to second order an asymptotic series expansion is con-—
structed for every eigenvalue.

1. INTRODUCTION

An important aspect in the mechanical theory of plates and shells is
the study of vibrations. In a mathematical model for those shells, the rela-
tions between deflections, stresses and loads are described by differential
equations, the constraints lead to boundary conditions to be imposed, and
the free vibrations are represented by eigenvalue problems for those diffe-
rential equatiomns. A typical equation which describes small deflections W of

a clamped membrane of shape @, which is stressed uniformly, is

82

ot

=

(1.1) o = 0, (I = boundary of Q) ,

J

= NAW, w|r

where p is the density per unit area and N the stress. The determination of
the free modes W(x,y,t) = u(x,y)eIMt naturally leads to the eigenvalue pro-

blem

(1.2) Au + du = 0, u] =0, A= pr/N

A more sophisticated model of the same membrane takes into account that the
membrane is a shell with finite (small) thickness h and has a flexural rigi-

dity D,
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D := En3/12(1 - v3) ,

where E is the elasticity and v is Poisson's ratio. This leads to the improved

model equation, cf. Timoshenko [16, ch. 8],

532

=

2

d
(1.3) o = -DA"W + NAW, w|1"=’5gll"=0 ,

|

N

ot

in which D is a small parameter. It looks quite natural that the free modes
of (1.3) converge to those of (l.1) if D decreases to zero; we shall prove
this in sectiomn 5.

We get another type of problem if we consider a membrane on which body
forces are exerted and whose tension is weak with respect to those body for-
ces, e.g. a thin metallized membrane in an electromagnetic field. This is

described by the model equation, cf. [16, ch. 8],

(1.4) pa—=NAW+X-—+Y

2y oW oW
F) dy
at? * y

er =0,
where (X,Y) is the body force and may depend on (x,y). In this case the be-
haviour of the free modes (if present) depends heavily on the field (X,Y).

The eigenvalues may disappear at infinity, they may remain discrete or tend

to a dense set for N -+ 0. We shall deal with these problems in sections 3-4.

These mechanical models motivate the study of the following eigenvalue

problems on a bounded domain Q CiRz with boundary T,

(1.5) -eAu + p(x,y)u = Au, ulr =0,
(1.6) -eAu + p(X,y)Bxu + q(x,y)ayu = Au, up = 0,

2 = =8u
(1.7) eA"u = Au = Au, ulr Bn]F 0,

where € is a small positive parameter, where p and q are smooth real func-
tions on Q and where A is the (complex) spectral parameter. We shall study
how the eigenvalues of these problems behave as & decreases to zero.

We shall show that the eigenvalues of problem (1.5) decrease with €,
and that their density (above the minimum of p) increases beyond bound for
e - +0 and is proportional to 1/e. The eigenvalues of the third problem (1.7)
decrease also, but they remain well separated and (as we expect) they con-—
verge for € -+ +0 to the eigenvalues of Dirichlet's problem —Au = )u, ulq= 0;
if T is smooth enough we can construct asymptotic series in powers of €? for
the eigenvalues and eigenfunctions. The spectral properties of the second

problem (1.6) depend heavily on the characteristics of the first order ope-
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rator pax + qay: all eigenvalues may recede to infinity (if Q does not con-
tain critical points of dy/dx = p/q), they may tend to a discrete set or
their density may grow beyond bound.

The problems (1.5-6-7) are prototypes of much more general elliptic sin—
gularly perturbed boundary value problems in n-dimensional space, for which
we can obtain analogous results. We have avoided this greater generality,
lest the essential techniques should be obscured by the amount of calcula-
tions.

Another motivation for the study of the eigenvalue problem Lgu = Au,
where LE stands for an operator defined in (1.5-6 or 7), is the study of the
steady state equation LEu = f (+ boundary conditions). It may be dangerous
to construct inadvertently a formal approximate solution of LEu = f, if zero
is the (unknown) limit of an eigenvalue. As an example, we refer to [1],
[14] and related papers on the singularly perturbed turning point problem
(the one-dimensional analogue of (1.6)), where fallacious and contradictory

results were obtained by use of merely formal methods. See also [3].

NOTATIONS

Let Q be a bounded open set in the plane GRZ) with boundary T'. It sa-
tisfies the cone condition if for any point (x,y) < 2 we can place a cone
of fixed height h and aperture w with its top at (x,y) in such a way that
the cone is contained inside Q completely. Hk(Q), with k = 0,1,2,..., is
the set of functions on {2, whose derivatives up to the order k are square
integrable; in particular HO(Q) = LZ(Q). HE(Q) is the subset of Hk(Q) of
functions whose derivatives up to the order k-1 are zero at I' (provided T
smooth enough). Functions in HE(Q) may be considered as functions on the
whole plane if we continue them by zero outside Q; these continuations are
in HkGRZ). In LZ(Q) the forms (-,+) and ||+ || denote the usual inner product

and norm

Nl—

(u,v) := JJ u(x,y);(x,y)dxdy, flull := (u,u)? ,
Q

and in H](Q) the vectorized forms (Vu,Vv) and || Vull are defined by

NI—

(Vu,Vv) := (Bxu,axv) + (ayu,ayv), |Vull := (Vu,Vu)? .

The Laplace operator A is a formal differential operator, which may act on

all functions in HZ(Q); it is made to an (invertible) differential operator
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by restricting it to a suitable domain, e.g. AID is the restriction to the
domain D < HZ(Q). In general we shall denote the domain of an differential
operator T by D(T) and its range by R(T).

The symbols ax and By denote partial derivatives in the x and y-direc-—
tion and Bn denotes the normal derivative in the direction of the outword

drawn normal at the boundary.

2. THE EIGENVALUES AND RAYLEIGH'S QUOTIENT

Let T be a selfadjoint operator on a Hilbert space H, let T be semi-—
bounded from below (i.e. (Tu,u) = y(u,u), vy ¢ R) and let it have a compact
inverse. As is well-known, cf. [12, ch. 3, § 6.8], the spectrum of T, o(T),
consists of real isolated eigenvalues of finite multiplicity and the set of
eigenfunctions corresponding to these eigenvalues is a complete orthonormal
set in H. Since T is semibounded with lower bound y, no eigenvalue can be
smaller than y; hence we can arrange the eigenvalues in a non-decreasing se-

quence such that

(2.1) o(T) = {x k ¢ IN} with X > A V.

k [ k+1 kK 'k

and such that each eigenvalue appears in the sequence as many times as its
multiplicity is (the eigenvalue is counted according its multiplicity). To
each eigenvalue A, corresponds an eigenfunction e, such that {ek | k e N} is
a complete orthonormal set in f.

Since T is selfadjoint the inner product (Tu,u) is real for all ue D(T).

Expanding u in the eigenfunctions we find (if u # 0)

)\k(u,ek)z
N

Tu,u
R 2
Clearly this quotient is minimal if u = e it then yields the first eigen—
value. More general, if V is the span of k eigenfunctions, the maximum of
the quotient (2.2) is just the largest eigenvalue connected to the eigenfunc-
tions in V; clearly this maximum is minimized and equal to Ak,if V is the span
of the first k eigenfunctions. So it is plausible that A, satisfies the mini-

k
max characterization

(2.3) Ak = min max ﬁ%%}%%
VeD(T) ,dimV=k ueV,u#0 2

The quotient (2.2) is called Rayleigh's quotient; the minimax characteriza-

tion (2.3) is easily proved in the way suggested above, cf. [5, ch. I1].



