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Preface

The present Lecture Notes volume combines aspects of two mathematical domains
which are closely connected to each other: group theory and the theory of buildings.
On the basis of investigations concerning twin buildings and subcomplexes of spher-
ical buildings, finiteness properties of some S-arithmetic groups are derived (cf. the

introduction for more details).

Large parts of this book are devoted to the theory of (twin) buildings and not
only written with group theoretic applications in mind. The first two sections of
Chapter I can serve very well as an introduction to twin buildings. §1 describes the
group theoretic background of this new theory. The basic definitions and facts (see
in particular Lemma 2) are introduced in §2. Though these results are mainly due
to Tits, the complete proofs are given here since they are hard to find in the original
papers or not yet published. The following two sections present some of my own
investigations concerning twin buildings. These are applied at the end of Chapter
[ in order to yield Theorem A. This theorem is one major step on the way towards
the results about S-arithmetic groups presented in Chapter III. The second main
theorem needed in this context is proved in the course of Chapter II. It generalizes the
well known Solomon-Tits theorem and states that certain subcomplexes of spherical
buildings are homotopy equivalent to bouquets of spheres “in general” (cf. Section
4 of the introduction). The techniques of the proof combine Tits’ classification of
spherical buildings with some combinatorial ideas. This part of the book is accessible

to every reader who has studied Tits’ Lecture Notes volume on spherical buildings.

I gladly take the opportunity to thank at least a few of those who helped in one
way or the other that this book could be written. First of all, I am greatly indebted
to Prof. H. Behr for his personal interest in me, for the opportunities he offered to me
and for many stimulating mathematical discussions. I am also very obliged to Prof.
H. Abels who invited me several times to the SFB 343 in Bielefeld where I spent
more than 17 months altogether and where parts of these notes first took shape. In
this context, I would also like to thank the DFG for the financial support I received
during that time. Last but not least | express my warmest thanks to Mrs. Ch. Belz

for preparing the TEX-version of the present book and for doing this exceptionally well.

Frankfurt am Main, September 1996
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Introduction

In the following pages, I will try to describe briefly the background of this book, the
key questions, the progress that has been achieved and some of the problems which

are left for future work.

1. Finiteness properties of S—arithmetic groups

Large parts of the present notes are devoted to the theory of buildings and are of
interest in their own right. However, the origin of these investigations was a group

theoretic question which I am going to describe now.

Since the last century, groups of invertible matrices have been studied extensively,
partly because of their geometric significance (one may think of O, (IR) and other
“groups of motion”). Since the books of Weyl (1946) and Dieudonné (1948/55),
important classes of these linear groups, namely the general and special linear, the
orthogonal (often also the spin-), the symplectic and the unitary groups over skew
fields, have been subsumed under the notion of “classical groups”. A common
feature of all classical groups is the fact that they can be defined by algebraic equations
over a commutative subfield k of the skew field K in question if the latter is
finite-dimensional over its center. In order to mention at least one example, I recall
that any orthogonal group is of the form O, (k,Q) = {g € GLn(k)|9'Qg = Q},
showing that the entries g;; of g € O,,(k, Q) satisfy a system of quadratic equations.

Starting with the papers of Borel and Chevalley in the mid 1950’s, a systematic
abstract theory of linear algebraic groups has been developed. Classical groups
belong to the central subjects of this theory which was also strongly influenced by Lie
theory on the other side. Chevalley’s classification of semisimple algebraic groups over
arbitrary algebraically closed fields, motivated by and at the same time vastly gener-
alizing the corresponding result concerning semisimple complex Lie groups, represents

one of the highlights in the theory of linear algebraic groups.

From the beginning, not only the Lie groups but also their arithmetic subgroups
like e.g.  SLn(ZZ), Spam(Z) have been of interest. By the way, “most” discrete
subgroups of finite covolume in semisimple Lie groups are arithmetic by a celebrated
theorem due to Margulis (for a precise statement and much more information about

S-arithmetic groups, I refer to [M]). However, the notion of an arithmetic group in



its original meaning (involving only Q-groups and the Ring ZZ) is too restrictive in
many respects. As S-arithmetic subrings of global fields are natural generalizations
of ZZ , arithmetic groups are generalized by S-arithmetic groups. The prototype
of an S-arithmetic group is represented by G((Os) , where G is an algebraic group
defined over a global field k¥ and Qg is the ring of S-integers in k£ . In general, all
subgroups of G(k) commensurable with G((Os) are called S-arithmetic. The appli-
cations mentioned in the title of this book refer to S-arithmetic groups of the form
G(IF,[t]) or G(IF,[t,t7"]), where G is a semisimple algebraic IF,-group (cf. Chapter
II1, § 2, Theorem C, Corollary 20 and Remark 17 iv)).

Regarding the structure of an S-arithmetic group I' , some questions are sug-
gesting themselves. Can one find a finite set of generators for ' 7 Is I' finitely
presented? What about higher (homological) finiteness properties? In this context,
I recall the following: T is said to be of type FP, (n € INoU{oo}) if there exists a
projective resolution of the trivial I'-module ZZ such that the first n + 1 projective
I-modules are finitely generated. This implies for example that all homology and
cohomology groups H;(T'), H'(T) are finitely generated abelian groups for 0 < i < n.
I mention in passing that commensurable groups are of the same F'P-type. The prop-
erties F'P; and finitely generated are equivalent; finite presentability implies F'P,
and “often” coincides with F'P, . (But there exist groups of type F'P, which are not
finitely presented as was shown recently, cf. [BB].) I refer to [Bi] for further interest-
ing consequences of the FP,-property. Modifying this notion slightly, one says that
I is of type F,, if there exists an Eilenberg-MacLane complex of type K(I',1) with
finite n-skeleton (respectively, with finite m-skeleton for all m € IN if n = oo). This
is equivalent to requiring F'P, plus finite presentability in case n > 2 (cf. [Brl], Ch.
VIII, §7).

As for answers to the questions stated above, one has to distinguish between the
number field and the function field case. Suppose that I' is an S-arithmetic subgroup
of the linear algebraic group G defined over the global field £ . We first assume that
k is a number field. If [ is arithmetic in the narrow sence (i.e. k = Q and
S = {o0}), it is always finitely presentable and even of type F,, according to results
of Raghunathan (cf. [Ra]), respectively of Borel and Serre (cf. [BoS1]). If T is just
S-arithmetic, a similar statement is not true any longer. For example, the additive
group of Z[;;] is not finitely generated. However, if G is reductive, I' is again

of type F., as was shown by Borel and Serre in [BoS2]. In fact much more is proved



there, for example that I’ is virtually of type FL and a duality group. Finally, the
finitely presented S-arithmetic groups were completely characterized by Abels in the
number field case (cf. [Al]).

Next we assume that k is a global function field, i.e. a finite extension of a
rational function field IF,(¢f) . We additionally suppose that G is reductive and
isotropic over k (if G is k-anisotropic, then I' is cocompact and hence of type F,,
according to Theorem 4 of [Sel]). Contrary to the number field case, I' need not even
be of type Fy here. It was first observed by Nagao in 1959 that SL,(IF,[t]) is not
finitely generated (cf. [N]). Using group actions on trees, this fact was explained very
nicely by Serre some years later (cf. [Se2], Ch. II, §1.6). Since 1959 several mathe-
maticians contributed to the solution of the problem regarding finite generation and
finite presentability of I' (cf. the references in [Bel] and [Be2]). Eventually in 1992,
Behr was able to give a full proof for the complete characterization — conjectured
by him already years before — of all finitely presented S-arithmetic subgroups of
reductive groups defined over global function fields (cf. [Be2]). The complete solu-
tion of the corresponding problem concerning higher finiteness properties of I' will
perhaps require another couple of decades. At the moment, the result is only known
for some classes of S-arithmetic groups. It is shown in Stuhler’s paper [Stu] that
SLy(Os) is of type F,_; but not of type FP, for any S-arithmetic function ring
Os with # S5 = s. (By the way, a similar result concerning the subgroup of all upper
triangular matrices in SLy(Os) is derived in [Bu].) On the other side, SL,11(IF[t])
is of type F,_; but not of type FP, provided that ¢ is “sufficiently big” (cf. [Ab1]
and [A2]). Analogous results are derived — presupposing Theorem B (cf. Chapter II,
§8), the proof of which is published here for the first time — in [Ab3] for all classical
Chevalley groups over IF,[t] . They will reappear as special cases of Theorem C
below. Apart from Stuhler’s paper and from the quantitatively slightly better result
for SL,4+1(IF,[t]) derived in [Abl] (cf. Remark 17 ii)), this Theorem C contains all
what is known at the moment concerning higher finiteness properties of S-arithmetic

subgroups of reductive groups in the function field case.

2. Filtrations of Bruhat-Tits buildings

Almost all the results mentioned in the last paragraphs were proved by using topo-
logical methods. The definition of the property F, already indicates that finiteness

properties of groups are closely connected with topology. Even problems regarding
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finite generation and finite presentability, though in principle accessible to the meth-
ods of algebraic K-theory, are sometimes more successfully attacked by studying the
action of the group in question on an appropriate topological space. This is well

demonstrated by the proof of Behr’s theorem given in [Be2].

Now for a given S-arithmetic subgroup I' of a reductive group G defined over a
global field k , a suitable space X with natural I-action can be obtained as follows:
Denote by k, the completion of & relative to v . Let X, be the quotient space of G(k,)
modulo a maximal compact subgroup if v is archimedian, respectively the Bruhat-
Tits building associated to G(k,) as described in [BrT1,2] if v is non-archimedian.

Then consider X = [] X, with diagonal I'-action.
vES

Though space and action enjoy “nice” properties (X is contractible and the I'-
action is proper), finiteness properties for I' cannot be deduced directly unless the
quotient X/I" is compact. Essentially two methods have been applied so far in order
to treat the non-cocompact case. The first consists in compactifying X/I" suitably,
thus yielding a compact K(I',1)-complex. This idea was successfully exploited in the
number field case (cf. [Ra] and [BoS1,2]), showing in particular that T is of type F,..
A different approach has to be used if k is a function field. Most of the results in
this case are based on an idea due to Stuhler. Studying I' = SL,(Os) , he filtered

X = U X, by an increasing sequence of [-invariant subcomplexes
JENg

Xo € ... C X; € X;41 € ... with compact quotients X;/I" . Since the filtration
constructed in [Stu] induces isomorphisms ;(.X;) lnr,-(XH_]) for all (sufficiently
big) 7 and all 0 < i < s— 2, all these homotopy groups are trivial in view of the
contractibility of X . This implies that SLy((Os) is of type F,_; . Using additionally a
criterion due to Brown (cf. [Br2]), it is also easily deduced from the properties of the

filtration that I' is not of type F,_; (Stuhler gave a different proof for this statement).

Stuhler’s method was applied independently by Abels and me in order to deter-
mine the “finiteness length” (i.e. the maximal m such that T' is of type F};) of
['=SLn41(IF,[t]) . Applying the “reduction theory” for X/T' , one has many choices
to construct filtrations of X which are finite modulo I' . The problem is to verify
the desired homotopy properties. The filtration used in [Ab1] yields a slightly better
result (I refer again to Remark 17i1)) but the proof given in [A2] is more elegant and
accessible to generalizations. It is Abel’s filtration which will be applied in the present

book (cf. Chapter I, §5).



3. Twin buildings

The action of SL,;,(IF,[t]) on the corresponding Bruhat-Tits building admits a sim-
plicial fundamental domain in the strictest sense. More generally, given a (simply
connected) Chevalley group G , it was shown by Soulé in [So] that X/ G(IF,[t]) can be
identified with a “quartier” in the Bruhat-Tits building X associated to G(IF,((t™")) ).
However, Soulé’s proof ist not very transparent since it depends on calculations and

not on geometric arguments.

A better understanding of this result is provided by the theory of twin buildings.
The group G = G(IF,[t,t7']) possesses a twin BN—pair such that the two com-
ponents A4, A_ of the corresponding twin building are canonically isomorphic to
the Bruhat-Tits buildings associated to G(IF,((t7')) ) , G(IF4((¢)) ) (cf. Chapter I, §1,
Example 3). G(IF,[t]) and G(IF,[t"!]) are opposite maximal parabolic subgroups in
G and are therefore stabilizers in G of two opposite vertices 0_ € A_ and 0, € A,.
It follows (cf. Chapter I, §3, Proposition 3 and Corollaries 1,2) that the action of
I' = G(IF,[t]) on X = A, admits the same simplicial fundamental domain as the

action of G(IF,[t™']) = Stabg 0, , namely a quartier in A, .

Starting with this observation, it has turned out in many respects that the action
of ' on A, is better understood if one interprets I' = G(IF,[t]) as the stabilizer of a
vertex in A_ | the “twin” of A, . Many arguments used in [Ab3] which I first thought
to be dependent on specific features of Bruhat-Tits buildings can in fact be deduced
more transparently in the framework of twin buildings (cf. in particular Ch. I, §5).
At the same time, this approach admits more general results, for example concerning
classical IF,-groups instead of Chevalley groups over IF,[t] but also regarding certain

Kac-Moody groups over IF, .

Therefore, Chapter I is completely devoted to twin buildings. Motivated by the
theory of Kac-Moody groups (cf. in particular [T8]), these objects which are general-
izations of spherical buildings were introduced by Ronan and Tits. Roughly speaking,
a twin building is a pair of buildings (A, A_) together with an opposition relation
between the chambers of A, and A_ possessing similar properties as the opposition
relation in a spherical building. Only parts of what is known concerning twin build-
ings are published yet (cf. [T9-11] and [MR]; for the special case of twin trees see
also [RT]). However, firstly the group theoretic background regarding twin BN-pairs,

emphasizing the most important examples, and secondly the basic definitions and



lemmata (which are either contained in [T9-11] or in [AR]) are recalled in the first
two sections of Chapter . §3 treats, as already mentioned, questions concerning fun-
damental domains for group actions on twin buildings. In order to deduce certain
local properties of the filtration described in § 5, one has to introduce “coprojections”
in twin buildings. This is done in §4, the main result being Proposition 4, where
coprojections are expressed by means of ordinary projections and the opposition re-
lation. (In case the reader is interested in a suitable notion of “convexity” for twin

buildings, I also refer to the appendix of §4.)

Finally, the goal of Chapter I, namely Theorem A, is deduced in §6. It states
the following: Given a group G acting “strongly transitively” (cf. Definition 5 in §2)
on a twin building (Ay,A_) , where A, A_ are thick n-dimensional buildings, and
a simplex @ # a_ € A_ . Then the stabilizer G,_ is of type F,,_; but not of type F P,
provided that certain conditions, namely (LF), (F) and (S), are satisfied. (LF) states
that the apartments of A, A_ are infinite and locally finite which amounts to saying
that they are either of irreducible affine or of compact hyperbolic type. (F) requires
the finiteness of the intersections G,_ N Gy, for all § # by € A, and is equivalent
to the finiteness of the ground field in most examples (cf. Corollary 7 in §6). The
crucial condition (S) will be discussed below. As for applications, one should think
of the example G = G(IF,[t,t7"]), a_ = 0_ and G,_ = G(IF,[t]) described above.
Another application is concerned with groups acting on twin trees (cf. Corollary 8
and Proposition 6) and generalizes the Nagao—Serre theorem. Further consequences

of Theorem A will be stated below. But before I have to say a few words concerning

(S)-
4. Spherical subcomplexes of spherical buildings

It is usually difficult to determine the homotopy properties of a filtration (X;);en,
directly. However, in [Stu], [A2], [Ab1,3] and in [Be2], this problem could be reduced
to questions concerning the local structure of the respective I'-complex X . In all
these cases, the isomorphisms m;(Xj) lnr,-(XjH) were established up to a certain
level of ¢ by showing that the occurring “relative links” ¢kx ,, ()N X; have the “right”

connectedness properties for all (poly-) simplices o € X;4; \ X .

A similar proceeding is also possible with regard to the filtration described in

Chapter I, §5, provided that the condition (LF) is satisfied. The latter implies that



the full links of non-void simplices in X = A, are spherical buildings. Then the
relative links with respect to the filtration are determined by Corollary 6 in §5. They
are of the form ©°(a) with a € © = fkx (o) , where ©°(a) denotes the subcomplex of
© generated by all chambers of ©® which contain a simplex opposite to a . Now the
desired homotopy properties of the filtration of A, can be deduced from the following

condition.

(S) If © is the full link of a non-void simplex in A, , then ©°(a) is (dim ©)-spherical
for any a € © .

Recall that (the geometric realization of) a d-dimensional simplicial complex is said to
be d-spherical if it is (d — 1)-connected. By the well known Solomon-Tits theorem,
every spherical building © is (dim ©)-spherical. Chapter II of the present book is

devoted to the question whether the same is true for the subcomplexes 0°(a) .

This question does not occur here for the first time. Already in connection with the
determination of the finiteness length of SL,41(IF,[t]) , it was essential. It has also
been investigated for other purposes than studying finiteness properties of groups.
In [T7], Tits considers (among other things) the question whether ©°(c) is simply
connected for a chamber c of an irreducible spherical rank 3 building © and translates
it into a group theoretic problem (cf. also Chapter II, §2, Lemma 19). For finite rank
2 buildings, the connectedness of ©°(a) is investigated in [Brou]. By the way, two
new results concerning generalized m-gons are outlined in Chapter II, §2, namely the
Propositions 7 and 9. Proposition 7 can be used in order to verify in “almost all”
cases the condition “(co)” introduced in [MR]. In that paper, an extension theorem
for isometries between twin buildings is proved under the assumption (co) that ©°(c)
is connected whenever O is a rank 2 link in one of the two components of the twin

building and ¢ is a chamber of O .

Unfortunately, it is definitely possible that ©°(a) is not spherical. To mention at
least one example (others are discussed in §2 of Chapter II), I recall that ©%(c) is a
torus if © is the Az building over IF, and ¢ a chamber of © (cf. [T7], Section 16).
Counter-examples of this type show that ©°(a) can only be expected to be spherical
if © is “thick enough”, i.e. if every panel (:= codimension 1 face of a chamber) is
contained in sufficiently many chambers. However, as Proposition 9 demonstrates,

this does not suffice. Thus we are led to the following



Conjecture 1: Let O be a spherical Moufang building of rank d + 1 which is “thick
enough”. Then ©°(a) is d-spherical for any a € O .

The proof of this conjecture for “classical buildings”, i.e. for spherical buildings
corresponding to classical groups (a definition not referring to groups is given in

Chapter II, §3), occupies the largest part of Chapter II. The result is the following:

Theorem B: Let O be a building of type Agy1,Cay1 or Dayq but not an exceptional
Cs building. Assume that every panel of © is contained in at least (2¢ 4 1) chambers
in the Agy1 case, respectively in at least (224! 4 1) chambers in the two other cases.
Then ©°(a) is d-spherical for anya € © .

The A4y case is considerably easier than the other two and was already established
in [AA]. The general method underlying the proof of Theorem B is discussed in some
detail in §3 of Chapter II. It should be applicable to buildings of exceptional type as
well. However, the corresponding proofs will become technically complicated to such

an extent that I have dispensed with trying to carry them out.

Some characteristic features of the proof of Theorem B are the following: One
has to treat the spherical buildings case by case (this is already necessary for rank 2
Moufang buildings, cf. Proposition 7). In each case, one represents the buildings as
flag complexes of certain geomtries and uses induction on the rank. In order to obtain
sufficiently strong induction hypotheses, one also has to consider other subcomplexes
than those of type ©°(a) . It is one of the main difficulties (at least in the D, case)
to choose the “right” class of subcomplexes. Decreasing the rank of the buildings is
connected with increasing the number of conditions defining the subcomplexes to be
considered. One ends up with bounds as stated in the theorem though the complexes
©%(a) are probably already spherical under much milder assumptions. Apart from
obvious quantative questions, there is also an interesting qualitative one: Is there a
fixed constant T € IN such that Theorem B remains true after replacing 2¢ + 1 ,
respectively 2%¢*1 41 by T ? The opinions about the answer to be expected diverge;

my guess would be “no”.

5. Group theoretic consequences

Equipped with Theorem B, it is now easy to draw conclusions from Theorem A.

As already mentioned, the main application is concerned with certain S-arithmetic



groups. For the first time, one also obtains some results regarding higher finiteness
properties in the function field case where the linear algebraic groups are non—split.
I will just state a variant — appearing as Corollary 20 in Chapter III, §2 — of the
more detailed Theorem C of Chapter III here.

Theorem C’: Let G be an absolutely almost simple IF-group which is not of excep-
tional type. Denote by n the IF,-rank of G . Suppose n > 1 and q¢ > 2*~' . Then
G(IF,[t]) and G(IF,[t,t7"]) are of type F,_; , and G(IF,[t]) is not of type FP, .

For the restrictions occurring in this statement, Theorem B is responsible. But a

similar result should also be true for the exceptional types.

Conjecture 2: The statement of Theorem C’ holds for any absolutely almost simple

IF,-group of IF,-rank n > 1 provided that g is “big enough”.

I am careful about the cases with small ¢ since | know meanwhile that Theorem A
becomes definitely wrong if one cancels assumption (S) (cf. the last remark concerning

(S) in Chapter I, §6, directly before Theorem A).

As far as G = G(IF,[t,t™"]) is concerned, Theorem C’ just represents a preliminary
result since the action of G on the corresponding twin building is not fully exploited

yet (cf. Chapter I, §6, Remark 7). I expect that the following is true:

Conjecture 3: Let G be an absolutely almost simple IF,-group of IF;-rank n > 1
and assume that ¢ is “sufficiently big”. Then G(IF,[t,t™"]) is of type Fy,_; but not of
type F Py, .

Of course, much more general statements than the two conjectures mentioned
above may be suspected in the function field case. However, since there are so few
results, it does not seem to be appropriate at the moment to formulate these specu-

lations explicitly.

Instead, I conclude this introduction by noting a further consequence of Theorem
A which is obtained as a by-product. As already mentioned, the methods of Chapter
I can also be applied to certain Kac-Moody groups over IFy. From Theorem A (to
be more precise: from the Corollaries 10 and 11) and from Proposition 11 in Chapter

I1, §2, one can deduce the following



Example: Let Gp be a Kac-Moody group functor as described in [T8]
(cf. also Example 5 below). Assume that the Coxeter system (W,S) associated
to D is of rank 4 and of compact hyperbolic type. Let ¢ be a prime power > 16 .
Then G = Gp(IF,) is finitely presented. All proper parabolic (with respect to one of

the two natural BN-pairs in G) subgroups of G are finitely presented but not of type
FP,.

10



I Groups acting on twin buildings

§ 1 Twin BN—pairs and RGD—-systems

“BN-pairs”, later on also called “Tits systems”, were introduced by Tits in the context
of linear algebraic groups. Tits extracted the BN-axioms from Chevalley’s work (cf.
in particular [C1] and [C2]) on semisimple groups and showed together with Borel
that this axiomatization applies as well to arbitrary, not necessarily split reductive
groups (cf. [BoT], §5, or [Bo], §21). BN-pairs have proved to be a powerful tool in
group theory since, mainly for two reasons. Firstly, much is known of the structure
of a group if it possesses a BN—pair (key-words: Bruhat decomposition, parabolic
subgroups, criterions for simplicity). Secondly, a group with a BN-pair naturally acts
on a simplicial complex, namely the building associated to it. This renders certain

group theoretic problems accessible to geometric interpretations and solutions.

If a BN-pair belongs to the group G = G(k) of k-rational points of a reductive
k-group G as described by Borel and Tits, it possesses some additional features due
to the properties of the family (2/.(k))ace of unipotent subgroups associated to the
(relative) root system ® = ;® of G. These properties were axiomatized by Bruhat
and Tits in [BrT1], §6.1, where they defined “root data” (“données radicielles”). The
Tits system corresponding to a root datum always possesses a finite Weyl group
because the latter coincides with the Weyl group of the root system indexing the
root datum. Therefore, the associated building is of spherical type. In particular, it
is possible to define when two chambers or two (minimal) parabolic subgroups are
opposite. These opposition relations are among the important additional features of
root data which have no analogues in the general theory of buildings and BN-pairs.
Nevertheless, the notion of “oppositeness” can also be applied to certain situations
where the Weyl groups are infinite. For example, every “minimal” Kac-Moody group
G over a field gives rise to two BN-pairs (G, By, N) and (G, B_, N) with the same
Weyl group W (cf. [T8]). Though B, and B_ are not conjugate if W is infinite, they
are related to each other in the same way as the opposite minimal parabolic subgroups
B and woBwg"' of a BN-pair with finite Weyl group, where w, denotes the element
of maximal length of the latter. A precise formulation of the relationship between
B, and B_ leads to the axioms of a “twin BN-pair” which will be recalled below.
The geometric structures corresponding to twin BN-pairs are “twin buildings”. They
were introduced by Ronan and Tits (cf. [T9], [T11] and [RT]) and will be treated in
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