OXFORD SCIENCE PUBLICATIONS

FINITE ELEMENT METHODS
[N ELECTRICAL POWER |
ENGINEERING

AB.. REECE
and T.W. PRESTON




Finite Element
Methods in
Electrical Power
Engineering

A. B. J. Reece

Formerly Deputy Director,
GEC ALSTHOM Engineering
Research Centre, Stafford and

Visiting Professor, UMIST

and

T. W. Preston

Head, Electromagnetics Group,
ALSTOM Research and
Technology Centre, Stafford

OXFORD

UNIVERSITY PRESS



OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford ox2 6DP
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York
Athens Auckland Bangkok Bogota Buenos Aires Calcutta
Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris Sdo Paulo Singapore Taipei Tokyo Toronto Warsaw
with associated companies in Berlin Ibadan
Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

«©) A. B.J. Reece and T. W. Preston, 2000
The moral rights of the authors have been asserted
Database right Oxford University Press (maker)
First published 2000
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above
You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data

Reece, A. B. J.
Finite element methods in electrical power engineering / A. B. J. Reece and T. W. Preston.
Includes bibliographical references and index.
1. Electric engineering—Mathematics. 2. Finite element method. 1. Preston, T. W. II. Title
TK153 .R392000 621.3'01'51-dc21 99-052752

ISBN 0 19 856504 6

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India

Printed in Great Britain on acid-free paper by
T.J. International Ltd., Padstow, Cornwall



Monographs in Electrical and Electronic Engineering

Series editors: P. Hammond, T.J.E. Miller, and T. Kenjo



Monographs in Electrical and Electronic Engineering

Series editors: P. Hammond, T.J.E. Miller, and T. Kenjo

25.

26.
27.

28.
29.
30.
31.
32.

33.
34.

35.

36.
3%

38.
39.
40.
41.

42.
43.

44.

45.

46.

Electrical machines and drives: a space-vector theory approach (1992)
Peter Vas
Spiral vector theory of a.c. circuits and machines (1992) Sakae Yamamura
Parameter estimation, condition monitoring, and diagnosis of electrical
machines (1993) Peter Vas
An introduction to ultrasonic motors (1993) S. Sashida and T. Kenjo
Ultrasonic motors: theory and applications (1993) S. Ueha and Y. Tomikawa
Linear induction drives (1993) J. F. Gieras
Switched reluctance motors and their control (1993) T. J. E. Miller
Numerical modelling of eddy currents (1993) Andrzej Krawczyk and
John A. Tegopoulos
Rectifiers, cycloconverters, and AC controllers (1994) Thomas H. Barton
Stepping motors and their microprocessor controls. Second edition (1994)
T. Kenjo and A. Sugawara
Inverse problems and optimal design in electricity and magnetism (1995)
P. Neittaanméki, M. Rudnicki, and A. Savini
Electric drives and their control (1995) Richard M. Crowder
Design of brushless permanent magnet motors (1995) J. R. Hendershott and
T. J. E. Miller
Reluctance synchronous machines and drives (1995) 1. Boldea
Geometry of electromagnetic systems (1996) D. Baldomir and P. Hammond
Permanent-magnet d.c. linear motors (1996) Amitava Basak
Vector control and dynamics of a.c. drives (1996) D. W. Novotny and
T. A. Lipo
Sensorless vector and direct torque control (1998) Peter Vas
Intelligent control: power electronic systems (1998)
Yasuhiko Dote and Richard G. Hoft
Time domain wave-splittings and inverse problems (1998)
Sailing He, Staffen Stréom, and Vaughan H. Weston
Al-based electrical machines and drives: power electronics, fuzzy logic,
and neural networks (1998) Peter Vas
Finite element methods in electrical power engineering (2000)
A. B.J. Reece and T. W. Preston



To Gwen and Pat
for their patience and encouragement
and to our colleagues past and present
whose contributions over the years have made this book possible



Preface

The appearance of yet another book on finite element computation of electro-
magnetic fields needs some explanation.

As developers and users of the finite element method in electrical engineering and
advocates of the value of the method in design and development work, we have
become aware of the difficulties experienced by new users when introduced to the
subject. The difficulties appear to arise in two areas, viz., (i) an inadequate under-
standing of relevant electromagnetics and (ii) an inability to appreciate the tricks
and traps of modelling. Whilst there are excellent books which deal with electro-
magnetics, numerical computation and some aspects of modelling, we believe there
is no single comprehensive volume which gives the new user or the interested
inquirer the foundation needed. This book is therefore aimed at aiding this group:
it is not intended to help the reader write finite element software.

We have chosen to divide the book into three parts, believing this will facilitate
its use. Part I covers ‘Relevant Theory’, avoiding the use of mathematics as far as
possible and aiming to emphasise the physical significance of the subjects discussed.
This means that it may not be sufficiently rigorous to satisfy the purist, but it should
provide the background needed to understand the later sections. Although three-
dimensional situations are briefly considered, the emphasis is on two-dimensional
cases, which are both easier to appreciate physically and, with care, adequate for
many practical cases. It also shows how the governing potential differential equa-
tions for two-dimensional cases may be represented in finite element terms.

Part II discusses the ‘Principles of Modelling’. After describing data generation
and post-processing possibilities, it outlines basic hardware and software require-
ments. It concludes by considering representation of saturation and permanent
magnet effects and the determination of derived quantities such as inductances and
forces. It also describes additions to basic software to deal with excitation predic-
tion, voltage-fed circuits, machine end fields and time stepping. It concludes with a
chapter on the importance of engineering judgement when setting up models.

Part I1I is entitled “Case Studies’. The examples described here are either taken
from, or based on, investigations carried out by the Electromagnetics Group of
ALSTOM Research and Technology Centre. They cover a wide range of studies made
onelectrical machines, transformers and auxiliary equipment. Some of the examples
given date back an appreciable time, but have been included either because they
make an important point and/or because test data is available to illustrate accuracy.
The aim is to show what is possible, to outline the steps necessary and, in some cases,
to indicate what can go wrong. The authors’ experience is, in the main, with the
ALSTOM package SLIM and the examples given used this package. However, the
comments throughout are intended, as far as possible, to be of general applicability.

The cases described and the programs used are the result of work carried out
in the Electromagnetics Group at ALSTOM Research and Technology Centre at
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Stafford over a period of more than 30 years. The work has been a team effort and
we are grateful to past and present colleagues for all their contributions in
developing and applying finite element software to aid designers in many product
companies. A mark of the team’s success is that most of these companies are now
regularly using finite element methods as part of the design process.

We wish to thank Lucas Varity (formally Lucas Electrical Industries) for per-
mission to use data relating to their products and ALSTOM product companies
(particularly ALSTOM Energy Ltd and ALSTOM T&D Transformers Ltd) for
allowing us to publish work carried out on their behalf. Thanks are due to the
Institution of Electrical Engineers and the Institute of Electrical and Electronic
Engineers for permission to reproduce tables and illustrations from papers
published in their proceedings. We also wish to thank the management of ALSTOM
Research and Technology Centre, Stafford for encouragement to publish. Finally,
we thank Helen Johnson for her efforts in producing the final manuscript from
our drafts.

Stafford A.B.J.R.
January 1999 T.W.P.



Symbols

Many symbols are defined as they occur, but frequently used ones are given below:
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vector magnetic potential
magnetic flux density
remanent flux density
capacitance

coenergy

electric flux density
electric field

‘energy’ functional

force

magnetising force (field strength)
coercive force

current density

self inductance

mutual inductance
vector electric potential
electric potential

stored magnetic energy
stored electric energy

depth of penetration = (2p/(popw)) "/

(penetration constant)
absolute permittivity = g,
permittivity of free space
relative permittivity
absolute permeability = popu,
permeability of free space
relative permeability
reluctivity = 1/u

electrical conductivity

flux linkage

electrical resistivity

scalar magnetic potential (mmf)
angular frequency

direct axis
eddy (or induced)

Wb/m

F/m

8.854 x 107" F/m
H/m

47 x 107" H/m
m/H

S/m

Wb

ohm-m

A

rads/s



Xviii Symbols

q quadrature axis
S source (or applied)

Bold letters indicate vector quantities. However, in two-dimensional problems, A, E
and J will have one component only, and in this case they are represented by normal
characters 4, E and J.
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