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THE AURORA OR-PARALLEL PROLOG SYSTEM

Ewing Lusk
Ralph Butler
Terrence Disz
Robert Olson
Ross Overbeek
Rick Stevens

Argonne*

ABSTRACT

Aurora is a prototype or-parallel implementation of
the full Prolog language for shared-memory multipro-
cessors, developed as part of an informal research col-
laboration known as the “Gigalips Project”. It cur-
rently runs on Sequent and Encore machines. It has
heen constructed by adapting Sicstus Prolog. an exist-
ing, portable. state-of-the-art. sequential Prolog system.
The techniques for constructing a portable multiproces-
sor version follow those pioneered in a predecessor sys-
tem, ANL-WAM. The SRI model was adopted as the
means to extend the Sicstus Prolog engine for or-parallel
operation. We describe the design and main implemen-
tation features of the current Aurora system, and present
some preliminary experimental results. We conclude with
our plans for the continued development of the system
and an outline of future research directions.

1 INTRODUCTION

In the last few years. parallel computers have started
to emerge commercially, and it seems likely that such ma-
chines will rapidly become the most cost-effective source
of computing power. However, developing parallel algo-
rithms is currently very difficult. This is a major obstacle
to the widespread acceptance of parallel computers.

Logic programming, because of the parallelism implicit
in the evaluation of logical expressions. in principle re-
lieves the programmer of the burden of managing paral-
lelism explicitly. Logic programming therefore offers the
potential to make parallel computers no harder to pro-
gram than sequential ones, and to allow software to be
migrated transparently between sequential and parallel
machines.

It only remains to determine whether a logic program-

*Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, IL 60439, U.S.A.

T On leave from SZKI, Donati u. 35-45, Budapest, Hungary

iDepartment of Computer Science, University of Manchester,
Manchester M13 9PL, U.K. Now at: Department of Computer
Science, University of Bristol, Bristol BS8 1TR, U.K.

8Swedish Institute of Computer Science, Box 1263, S-164 28
Kista, Sweden

David H. D. Warren
Alan Calderwood

Peter Szeredil
Manchestert

Seif Haridi
Per Brand
Mats Carlsson
Andrzej Ciepielewski
Bogumil Hausman

SICS

ming svstem coupled with suitable parallel hardware can
realise this potential. The Aurora system is a first step
towards this goal. Aurora is a prototype or-parallel
implementation of the full Prolog language for shared-
memory multiprocessors. It currently runs on Sequent
and Encore machines. It has been developed as part
of an informal research collaboration known as the “Gi-
galips Project”.

The Aurora system has two purposes. Firstly, it is in-
tended to be a research tool for gaining understanding
of what is needed in a parallel logic programming sys-
tem. In particular, it is a vehicle for making concrete,
evaluating, and refining one (or more) parallel execution
models. The intention is to evaluate the models not just
on the present hardware, but with a view to possible fu-
ture hardware (not necessarily based on shared physical
memory ).

Secondly, Aurora is intended to be a demonstration
system, that will enable experience to be gained of run-
ning large applications in parallel. For this purpose, it is
vital that the system should perform well on the present
hardware, and that it should be a complete and practical
system to use.

In order to support real applications efficiently and ele-
gantly, it is necessary to implement a logic programming
Janguage that is at least as powerful and practical as Pro-
log. The simplest way to ensure this. and at the same
time to make it easy to port existing Prolog applications
and systems software, is to include full Prolog with its
standard semantics as a true subset of the language. This
we have taken some pains to achieve.

The bottom line for evaluating a parallel system is
whether it is truly competitive with the best sequential
systems. To achieve competitiveness, it is necessary to
make a parallel logic programming system with a single
processor execution speed as close as possible to state-
of-the-art sequential Prolog systems, while allowing mul-
tiple processors to exploit parallelism with the minimum
of overhead. This has been our goal in Aurora.

To summarise the objectives towards which Aurora
is addressed, they are to obtain truly competitive per-
formance on real applications by transparently exploit-
ing parallelism in a logic programming language that in-
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cludes Prolog as a true subset.

The main purpose of this paper is to describe the issues
that must be confronted in or-parallel Prolog implemen-
tation and detail the decisions and compromises made
in Aurora. We include benchmark tests that point out
the strengths and weaknesses of some of these decisions.
We conclude by describing some directions for further
research.

2 BACKGROUND

In this section we describe the setting in which Aurora
was developed and give a short history of the Gigalips

Project.

2.1 Sequential Prolog Implementations

Prolog implementation entered a new era when the
first compiler was introduced. for the DEC-10 [21]. The
speed of this implementation, and the portability and
availability of its descendant, C-Prolog. set a language
standard. now usually referred to as the “Edinburgh Pro-
log”. The DEC-10 compilation techniques led as well to
a standard implementation strategy, usually called the
WAM (Warren Abstract Machine) [22]. In a WAM-
based implementation. Prolog source code is compiled
into the machine language of a stack-based abstract ma-
chine. A portable emulator of this abstract machine
(typically written in C) yields a fast, portable Prolog sys-
tem, and a non-portable implementation of crucial parts
of the emulator can increase speed still further. A paral-
lel implementation of Prolog is achieved by parallelizing
this emulator.

There are now many high-quality commercial and non-
commercial Prolog systems based on the WAM. A par-
allel implementation can obtain considerable leverage by
utilizing an existing high-quality implementation as its
foundation. We use the Sicstus implementation [7], one
of the fastest portable implementations.

Using a fast implementation is important for two rea-
sons. Firstly, the single most important factor determin-
ing the speed of a parallel version is the speed of the
underlying sequential implementation. Secondly, many
research issues related purely to multiprocessing only be-
come apparent in the presence of a fast sequential imple-
mentation. (Speedups are too easy to get when speed is
too low.)

2.2 Multiprocessors

It is only in the last two years that multiprocessors
have emerged from the computer science laboratories
to become viable commercial products marketed world-
wide. Startup companies like Sequent, Encore, and Al-
liant have made shared-memory multiprocessors com-
monplace in industry and universities alike. They are
relatively inexpensive and provide a standard system en-

vironment (UNIX7*) thus making them extremely pop-
ular as general-purpose computation servers. A similar
revolution is happening with local-memory multiproces-
sors, sometimes called “multicomputers”, but these are
currently more specialized machines, despite their scala-
bility advantages.

What the new breed of machines does not provide is a
unified way of expressing and controlling parallelism. A
variety of compiler directives and libraries are offered by
the vendors. and while they do allow the programmer to
write parallel programs for each machine, they provide
neither syntactic nor conceptual portability. A number
of researchers are developing tools to address these is-
sues. but at a relatively low level (roughly the same level
as the language they are embedded in, such as C' or For-
tran). A goal of the Gigalips Project is to determine
whether it is feasible to propose logic programming as
the vehicle for exploiting parallelism on these machines.

2.3 Or-Parallelism

As is well known, there are two main kinds of paral-
lelism in logic programs, and-parallelism and or-parallel-
ism. The issues raised in attempting to exploit the two
kinds of parallelism are sufficiently different that most
research efforts are focussing primarily on one or the
other. Much early and current work has been directed to-
wards and-parallelism. particularly within the context of
“committed choice” languages (Parlog, Concurrent Pro-
log, Guarded Horn Clauses) [14, 20]. These languages ex-
ploit dependent and-parallelism, in which there may be
be dependencies between and-parallel goals. Other work
[11, 18] has been directed towards the important spe-
cial case of independent and-parallelism, where and-
parallel goals can be executed completely independently.

The committed choice languages have been viewed pri-
marily as a means of expressing parallelism explicitly, by
modelling communicating processes. In contrast, one of
our main goals is to exploit parallelism implicitly, in a
way that need have little impact on the programmer.
This viewpoint has led us to take a rather different ap-
proach, and to focus in particular on or-parallelism.

There are several reasons for focussing on or-parallel-
ism as a first step. Briefly, in the short term, or-parallel-
ism seems easier and more productive te exploit trans-
parently than and-parallelism. However, none of these
reasons precludes integrating and-parallelism at a later
stage. and indeed this is our ultimate intention.

o Generality. It is relatively straightforward to ex-
ploit or-parallelism without restricting the power
of our logic programming language. In particular.
we retain the ability we have in Prolog to generate
all solutions to a goal.

e Simplicity. It is possible to exploit or-parallelism
without requiring any extra programmer annota-
tion or complex compile-time analysis.



