FIFTH GENERATION
%%PUTER SYSTEMS

Proceedings of the International Conference on
Fifth Generation Computer Systems 1988

Edited by
Institute for New Generation
Computer Technology (ICOT)

Volume 3

@_OHM (‘:3;1 Springer-Verlag

FIFTH GENERATION
COMPUTER SYSTEMS
1988

Proceedings of the International Conference on
_Fifth Generation Computer Systems 1988
Tokyo, Japan

November 28-December 2, 1988

Edited by

Institute for New Generation
Computer Technology (ICOT)
Tokyo, Japan

Volume 3

@ OHM @ Springer-Verlag

FIFTH GENERATION COMPUTER SYSTEMS 1988

Proceedings of the International Conference on Fifth Generation Computer Systems 1988

Copyright © 1988 by Institute for New Generation Computer Technology
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by
any means, electronic, mechanical, recording or otherwise, without the prior permission of the copyright owner.

Distribution
Sole distribution rights outside Japan granted to Springer-Verlag
All orders should be sent to the following addresses:

Japan:
OHMSHA LTD., 3-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101, Japan

North America:
Springer-Verlag NY Inc., 175 Fifth Avenue, New York, NY 10010

Rest of the world:
SPRINGER-VERLAG, Heidelberger Platz 3, 1000 Berlin 33, FRG

British Library Cataloguing in Publication Data
International Conference on Fifth Generation Computers: 1988
International Conference on Fifth Generation Computer Systems (FGCS '88).
1, Computer systems
1. Title
004
ISBN 3-540-19558-0

Library of Congress Cataloging-in-Publication Data
International Conference on Fifth Generation Computer systems (1988: Tokyo, Japan)
Proceedings of the International Conference on Fifth Generation Computer Systems 1988:
Nov.28- Dec.2, 1988, Tokyo Prince Hotel, Tokyo Japan/
Institute for New Generation Computer Technology.
p. cm.
Bibliography: p.
Includes indexes,
ISBN 0-387-19558-0 (U.S.)
1. Fifth generation computers — Congresses. 1. Shin Sedai Konpyuta Gijutsu Kaihatsu Kiko (Japan) II. Title.
QA76.85.158, 1988
004 — dc20 89-11366
CIP

ISBN-3-540-19558-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-19558-0 Springer-Verlag New York Berlin Heidelberg
ISBN 4-274-19558-0 OHMSHA, LTD.

Printed in Japan

TABLE OF CONTENTS
Volume 1

KEYNOTE SPEECH

Hop, Step and Jump
K FUuChi . .. o 1

ICOT RESEARCH AND DEVELOPMENT

Present Status and Plans for Research and Development

T RUrOZUMI oo 3
Research and Development of the Parallel Inference System in the Intermediate Stage of
the FGCS Project

S. Uchida, K. Taki, K. Nakajima, A. Goto and T. Chikayama 16
Knowledge Base System in Logic Programming Paradigm

H. Itoh, H. Monoi, S. Shibayama, N. Miyazaki, H. Yokota and A. Konagaya 37
Problem-Solving and Inference Software

R. Hasegawa and researchers of the First Research Laboratory 54

The Research and Development of Natural Language Processing Systems in
the Intermediate Stage of the FGCS Project

S. Uchida, T. Yoshioka, R. Sugimura, Y. Tanaka, K. Hasida and K. Mukai 70
Experimental Knowledge Processing System

Y. Fujii, H. Taki and other researchers of the Fifth Research Laboratory 85

INVITED LECTURES

Prospects for Cognitive Science

HA. Simon 111
Logic Programming Schemes

KL Clark 120

PANEL DISCUSSIONS

Social Impact of Information Technology and International Collaboration
Social Impact of Information Technology and International Collaboration

Ho KAFAUSU s nimsiomn o0 % 5 509809005050k 5 5 8 b s ey 60 B0 b0 e s 1 b B 1 0 31 6 143
Artificial Intelligence: Perspectives and Predictions

JH. Siekmann 145
International Collaboration in IT

T WRHIRET 1 5o 5 0 m 5 58 05 56 0080 e B S e e i e 6 B B8 B # 8§ 147
Social Impacts of Advanced Computers

EW. Weingarten 151

Theory and Practice of Concurrent Systems
The Panel on Theory and Practice of Concurrent Systems

E.Shapiro 152
Mechanisms for Concurrent Computing
W DAIlY. . oo 154

Theory and Practice of Concurrent Systems
G . Fox . . 157

i

Knowledge Processing

C o Hewilt . .., 161
Some Directions in Concurrency Theory

L1 g T 163
Theory and Practice of Concurrent Systems—The Role of Kernel Language in the FGCS Project—

K Ueda 165
Theory and Practice of Concurrent Systems — A Position Paper

DHD. Warren 167
SPECIAL SESSION

Progress and Future Plans of Knowledge Information Processing
Advanced Information Processing in ESPRIT — Status and Plans

JM Cadiou 171
A Review of MCC’s Accomplishments and Strategic Outlook for Knowledge-Based Systems

E LOWBIEMAL « oo insvosuouisosaansosnssssasssngasimiddmbnnmnnnmnessnmmons 180
UK IKBS Programmes

T.E Walker 189
ICOT RESEARCH TOPICS
Overview of Knowledge Base Mechanism

S. Shibayama, H. Sakai, T. Takewaki, H. Monoi, Y. Moritaand H. Itoh 197
Overview of the Parallel Inference Machine Architecture (PIM)

A. Goto, M. Sato, K. Nakajima, K. Taki and A. Matsumotooooou.. 208
Overview of the Parallel Inference Machine Operating System (PIMOS)

T. Chikayama, H.Sato and T. Miyazalti s ccs::65 650055 scosnssmnsnssnssssonns 230
Overview of the Knowledge Base Management System (KAPPA)

K. Yokota, M. Kawamura and A. Kanaegamio, 252
Constraint Logic Programming Language CAL

A. Aiba, K. Sakai, Y. Sato, D.J. Hawley and R. Hasegawa 263
Overview of the Dictionary and Lexical Knowledge Base Research

Y. Tanaka and T. Yoshioka 277
A Software Environment for Research into Discourse Understanding Systems

R. Sugimura, K. Hasida, K. Akasaka, K. Hatano, Y. Kubo, T. Okunishi and T. Takizuka 285
Expert System Architecture for Design Tasks

Y. Nagai, S. Terasaki, T. Yokoyama and H. Taki 296

AUTHORS INDEX i

i

Volume 2

FOUNDATION

INVITED PAPER

Interpreting One Concurrent Calculus in Another
R MHINEE .o om0 ssms smsimmasmess s s s ii§ 853358858885 i8inonnnnonnnsennsnnsnss 321

SUBMITTED PAPERS

Functional Logic Programming
The Semantics of a Functional Logic Language with Input Mode

D.W. Shin, JH. Nang, SR. Maengand JW.Chociiiuiiion.. 327
Conditional Equational Programming and the Theory of Conditional Term Rewriting

N. Dershowitz and M. Okada 337

Theory of Parallel Computation
Uniform Abstraction, Atomicity and Contractions in the Comparative Semantics
of Concurrent Prolog

JW.de Bakker and JIN. Kok 347
Parallel Computational Complexity of Logic Programs and Alternating Turing Machines

Y Okubeand S. Yafifi#, , ; 5o oo o066 5acssssessssasssnsnssansasaasnassdasssnss 356
Finite Failures and Partial Computations in Concurrent Logic Languages

M. Falaschiand G. Levi. e 364
A Declarative Semantics of Parallel Logic Programs with Perpetual Processes

M MUTARAME < ; o s 5 5555555 s ensssssnniansooosssssarssisshassssssisssssasiasias 374

Formal Semantics
Semantics of Logic Programs over Sequence Domains

T 382
Local Definitions with Static Scope Rules in Logic Programming
L. Giordano, A. Martelliand G.F. ROSSIiuuuiiiiinaaan 389

WEIGHTED GRAPHS, A Tool for Expressing the Behaviour of Recursive Rules
in Logic Programming
P.Devienne 397

Program Analysis and Transformation (2)
Horn Equality Theories and Complete Sets of Transformations

SCHolldoblero 405
Preservation of Stronger Equivalence in Unfold/Fold Logic Program Transformation

T. Kawamura and T. Kanamori i 413
An Abstract Interpretation Scheme for Logic Programs Based on Type Expression

AK Bansal and L. Sterling 422
Transformation of Strictness-Related Analyses Based on Abstract Interpretation

M. Ogawaand S.0n0 430
Reasoning and Learning

Rules and Justifications: A Uniform Approach to Reason Maintenance and
Non-Monotonic Inference
M. Reinfrank and H. Freitago, 439

v

An Efficient Learning of Context-Free Grammars for Bottom-Up Parsers

Y Sakakibard i iaccovsssssssiss58568a885iakacaeiosannrnnnnanannarnennons 447
Nonmonotonic Reasoning by Minimal Belief Revision

K. Satoh . . .o 455
Generating Rules with Exceptions

JOATMGA ..o 463

Situation Semantics
Situation Semantics and Semantic Interpretation in Constratint-Based Grammars

Pl HAWOSEN « 5 s 606555 56 5 5.5 85 86 86 86 55 556335883583 6reterananansasnsnsnnnns 471
Partially Specified Term in Logic Programming for Linguistic Analysis

K- Mukai 479
Towards a Computational Interpretation of Situation Theory

H. Nakashima, H. Suzuki, PK. Halvorsen and S. Peters 489
Logic and Theorem Proving
Knowledge Representation and Inference Based on First-Order Modal Logic

KIwanumaand M. Harao i, 499
Declarative Semantics for Modal Logic Programs

Ph. Balbiani, L. Farinas Del Cerro and A. Herzigcccouiao... 507
Epistemic Logic Programming

YJJIAAG. o v i s a5 0 05665885586 6558886aaeeiineneansnnneennsonneenssnneenncan 515

Theorem-Proving with Resolution and Superposition: An Extension of the Knuth
and Bendix Procedure to a Complete Set of Inference Rules
ML BVSINONWEIEN. o i3 520000001080t 0a0anenssssaasidssotsaaasniiadsiiaasassss 524

SPECIAL SESSION

Messages form Parallel Complexity Theory: Does Parallelism Help?
Parallel Complexity and P-Complete Problems

S-MIyano oo 532
Parallel Approximation Algorithms

EW. MAYT © oo oo e e e e e e E 542
SOFTWARE
SUBMITTED PAPERS

Program Analysis and Transformation (1)
Algebraic Meta-Level Programming in Prolog

G.Louisand M. Vauclair 555
Program Transformation Applied to the Derivation of Systolic Arrays

N.Yoshidao 565
The Use of Assertions in Algorithmic Debugging

W. Drabent, S. Nadjm-Tehrani and J. Maluszynski 573
Transformation Rules for GHC Programs

K Uedaand K. FurukGwa e e e 582
SPECIAL SESSION

Meta-Computation and Reflection
A Tutorial Introduction to Metaclass Architecture as Provided by Class Oriented Languages
P.Cointe 592

Directions for Meta-Programming

I LI o5 o mnsnnnsssnmansssrnaanssanansmneasssobhis »abiib e d A HHaAE 0T RARTAR b 609
Reasoning about Knowledge and Ignorance

L.C. Aiello, D. Nardiand M. Schaerf 618

SUBMITTED PAPERS

Computation Models
Software for the Rewrite Rule Machine

JA. Goguen and J. Meseguer 628
A’'UM — A Stream-Based Concurrent Object-Oriented Language —

K. Yoshida and T. Chikayama i 638
Guarded Horn Clause Languages: Are They Deductive and Logical?

C.Hewittand G. Agha 650

Functional Programming
Lazy Evaluation of FP Programs: A Data-Flow Approach

Y-H Weiand J-L. Gaudiot 658
Committed Choice Functional Programming

G.Bdge and G. Lindstrom 666
A Progress Report on the LML Project

B. Bertolino, P. Mancarells, L. Meo, L. Nini, D. Pedreschiand F. Turini 675

INVITED PAPER

Program Evaluation and Generalized Partial Computation
Y Futamura 685

SUBMITTED PAPERS

Constraint Logic Programming
The Constraint Logic Programming Language CHIP

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier 693
Applications of a Canonical Form fer Generalized Linear Constraints

J.L Lassez and K. McALOON 703

Deductive Data Bases
A Query Independent Method for Magic Set Computation on Stratified Databases

L. Balbin, K. Meenakshi and K. Ramamohanardo 711
Efficient Query Answering on Stratified Databases ‘

J-M. Kerisit and J-M. Pugin e 719
Answering Linear Recursive Queries in Cyclic Databases

C-S. Wuand L] Henschen e 727
CAP — A Three-Phase Query Processing Technique for Indefinite Databases

S.Chiand LJ. Henschen e e 735

Parallel Programming Languages
ANDORRA Prolog — An Integration of Prolog and Committed Choice Languages

S Haridignd P.BYGNA. - . - s co65nme e ssssssnssnesssssssssssss s sssassssssasans 745
Design of a Concurrent Language for Distributed Artificial Intelligence

J.Ferber and J-P. Briot. o 755
The Language FCP (:,?)

S. Kliger, E. Yardeni. K. Kahn and E. SWhapivo . ; .cvvcscssvppssssssssssssssassssssssss 763
Meta-Interpreters and Reflective Operations in GHC

JTanaka 774

vi

Logic Programming Languages
Tables as a User Interface for Logic Programs

M.HM. Cheng, MH. van Emdenand JHM. Lee 784
Modular and Communicating Objects in SICStus Prolog

NAFISRIEWY : 5 o s 55 6 vssassvsissssassessassesinsnspsisiisisnosasssssasaasing 792
Benchmarking of Prolog Procedures for Indexing Purposes

M. Meier 800
Foundations of DISLOG, Programming in Logic with Discontinuities

P. Saint-DiZier 808

AUTHORS INDEX i

Volume 3

ARCHITECTURE

SUBMITTED PAPERS

Parallel Prolog Systems
The Aurora Or-Parallel Prolog System

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D.H.D. Warren, A. Calderwood,

P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski and B. Hausman
Cut and Side-Effects in Or-Parallel Prolog

B. Hausman, A. Ciepielewski and A. Calderwood,
The Parallel ECRC Prolog System PEPSys: An Overview and Evaluation Results

U. Baron,]. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J-C. Syre

ANl H: WESTBIAL » . 5.0 5050 509 15655 00 00176 008 0 0.6 5 606 i 500 B 8 BB GG SR 6 87§38 58
Performance of AND-Parallel Execution of Logic Programs on a Shared-Memory Multiprocessor

Y-J.Linand V.Kumar

Parallel Architectures (1)
Design of an Efficient Dataflow Architecture Without Data Flow

GR Gao,R Tioand HHJ. HUm e
Cell and Ensemble Architecture for the Rewrite Rule Machine

S. Leinwand, J.A. Goguen and T. Winkler
A VLSI Building Block for Massively Parallel Computation

A. Asthana, B. Mathews, CJ. Briggs and M.R. Cravatts
Multiport Memory Architectures

Y. Tanaka

Parallel Architectures (2)
Unification-Based Query Language for Relational Knowledge Bases and Its Parallel Execution

H. Monoi, Y. Morita, H. Itoh, T. Takewaki, H. Sakai and S. Shibayama
A New External Reference Management and Distributed Unification for KL1

N. Ichiyoshi, K. Rokusawa, K. Nakajima and Y. Inamura
Parallelism in the PESA I Multiprocessor

F. Schretnierand G ZDNMEHMANN ;. ;o s ccsosvvviniersoressesatanantsamesansomnns

Implementation Techniques for Inference Machines
A Light-Weight Prolog Garbage Collector

H Touatiand T.Hama s
A Wide Instruction Word Architecture for Parallel Execution of Logic Programs Coded in BSL

K Ebcioglu and M. Kumar

INVITED PAPER

Data Diffusion Machine — A Scalable Shared Virtual Memory Multiprocessor
D.HD. Warrenand S. Haridi i

SUBMITTED PAPERS

Parallel Inference Machines
Macro-Call Instruction for the Efficient KL1 Implementation on PIM
T. Shinogi, K. Kumon, A. Hattori, A. Goto, Y. Kimura and T. Chikayama

Vil

vili

CARMEL-2: A Second Generation VLSI Architecture for Flat Concurrent Prolog

A Harsat and R GIOSAY ::::csusssvsnissnssssssssvssssssdsuneiasasfaeisss 962
Multi-Context Processing and Data Balancing Mechanism of the Parallel Inference Machine PIE64

HRKolkeand H . TanaRa oo osvesonmsssssnssnsnsssnssssnsnsssmsssssssssssss 970
A Load Balancing Mechanism for Large Scale Multiprocessor Systems and Its Implementation

Y. Takeda, H. Nakashima, K. Masuda, T. Chikayama and K. Taki 978

Scheduling for Parallel Machines
Load-Dispatching Strategy on Parallel Inference Machines

M. Sugie, M. Yoneyama, N. Idoand T.Tarui 987
Compile-Time Granularity Analysis for Parallel Logic Programming Languages

E-Tick . ..o 994
A Highly Parallel Chess Program

EW. Felten and SW. Otto 2 E A R B8 E R nE e e e e n s 1001

SPECIAL SESSION

Parallelism in Al
Artificial Intelligence Related Research on the Connection Machine

D.LWaltzand C. Stanfill 1010
Artificial Intelligence and Neural Computing

Yo BANZL . . o v v s e 5005 5 6 6 020000 06060106 6060 60 0 6 1025

SUBMITTED PAPERS

Implementation Model for Parallel Logic Languages
Massively Parallel Implementation of Flat GHC on the Connection Machine

M. Nilsson and H. TanaRa 1031
KL1 in Condition Graphs on a Connection Machine

J Bayilund, N, Hapner and Ml WaBi. « < o o0 w0 e om0 o 6w o e 0w oo 50 5w s 1041
A Parallel Implementation of GHC

JRW. Glauert and G.A. Papadopoulos 1051
LogDf: A Data-Driven Abstract Machine Model for Parallel Execution of Logic Programs

P, Bisinas Gind G TOEHE «cimvmwaomr o mm o0 505 50w 005 .85 00500 0155066 0 0 1059
APPLICATIONS
SUBMITTED PAPERS
Graphics and Music
Toward Intelligent Interfaces for Graphic Design Applications

H.Liberman 1073
How to Realize Jazz Feelings — A Logic Programming Approach —

K. Hirata, T. Aoyag] and H. KONGRE o s oum oo e men o s s e mee s s s s o6 b i 66 s e 1081
INVITED PAPER
Multiple Reasoning Styles in Logic Programming

H. Gallaire 1089
SUBMITTED PAPERS
Natural Language (1)

Direct Memory Access Translation for Speech Input — A Massively Parallel Network of
Episodic/Thematic and Phonological Memory
H. Tomabechi, T. Mitamura and M. Tomitauuuuiuaino.., 1100

Overview of the Core Language Engine

H. Alshawi, D.M. Carter,]. van Eijck, R.C. Moore, D.B. Moran and S.G. Pulman 1108
Projections and Semantic Description in Lexical-Functional Grammar

P-K. Halvorsen and RM. Kaplan vcvcci v ivumnsnmsmmenassnmeseess s 1116
ADAM: An Extension of Situation Semantics for Practical Use

C. Numaoka and M. ToROTO 1123
Natural Language (2)
Preference Judgement in Comprehending Conversational Sentences Using Multi-Paradigm
World Knowledge

T. Ukita. K. Sumita, S. Kinoshita, H. Sanoand S. Amano i ... 1133
A Multi-Target Machine Translation System

M.C. McCord 1141
The Design of Post-Analysis in the JETS Japanese/English Machine Translation System

D.E JORNSONo 1150

Knowledge Representation
The Knowledge Dictionary: A Relational Tool for the Maintenance of Expert Systems

B.Jansen and P. Compton 1159
Knowledge Representation with Abstractive Layers for Information Retrieval
T. Koguchi, H. Kondo, M. Oba and H. Itoho iiiiiuiaio. 1168

CHEMILOG — A Logic Programming Language/System for Chemical
Information Processing —

T. Akutsu and S. ORSUZA 1176
Qualitative Reasoning
A Symbolic Framework for Qualitative Kinematics

B Faltings 1184

An Examination for Applicability of FGHC: The Experience of Designing Qualitative Reasoning
System

H. Ohwada and F. Mizoguchi i, 1193
Methods for Partition of Target Systems in Qualitative Reasoning

K. Sakane, M. Ohki, J. Sawamoto and Y. Fujii, 1201
Sphinx — A Hybrid Knowledge Representation System

SHan and JW. Cho 1211
SPECIAL SESSION

New Paradigms of Knowledge Acquisition
Knowledge Acquisition Techniques and Tools: Current Research Strategies and Approaches

JH.BOOSE . . . o oot 1221
Comments on Knowledge Acquisition and Learning

S. Kunifuji (responder) 1236
When Will Machines Learn?

DB EENOL & wnosssnnres swmssnsessssssssissssissssgsicsgsfesssansmmnmnens 1239
A Next-Generation Knowledge-Base from the Viewpoint of Extending Logic Framework

M. Ishizuka (responder). 1246
SUBMITTED PAPERS
Knowledge Acquisition
Knowledge Acquisition by Observation

HoTaki . . .o 1250

Validation in a Knowledge Acquisition System with Multiple Experts
MLEG. ShlWe e osnusnssonsnaeeas assaannRbs ot s 55558623588 Rs56885ia828 nmus 1259

X

Applying Explanation-Based Generalization to Natural-Language Processing
M.Rayner 1267

Knowledge Maintenance
Problem Solving with Hypothetical Reasoning

KiInoue 1275
Representing Knowledge for Logic-Based Diagnosis

D.Pooleo 1282
A Human Strategy-Based Troubleshooting Expert System for Switching Systems

S. Wada, Y. Koseki and T. Nishida 1291
co-LODEX: A Cooperative Expert System for Logic Design

F. Maruyama, T. Kakuda, Y. Matsunaga, Y. Minoda, S. Sawada and N. Kawato 1299

ARCHITECTURE

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1988,
edited by ICOT. © ICOT, 1988

819

THE AURORA OR-PARALLEL PROLOG SYSTEM

Ewing Lusk
Ralph Butler
Terrence Disz
Robert Olson
Ross Overbeek
Rick Stevens

Argonne*

ABSTRACT

Aurora is a prototype or-parallel implementation of
the full Prolog language for shared-memory multipro-
cessors, developed as part of an informal research col-
laboration known as the “Gigalips Project”. It cur-
rently runs on Sequent and Encore machines. It has
heen constructed by adapting Sicstus Prolog. an exist-
ing, portable. state-of-the-art. sequential Prolog system.
The techniques for constructing a portable multiproces-
sor version follow those pioneered in a predecessor sys-
tem, ANL-WAM. The SRI model was adopted as the
means to extend the Sicstus Prolog engine for or-parallel
operation. We describe the design and main implemen-
tation features of the current Aurora system, and present
some preliminary experimental results. We conclude with
our plans for the continued development of the system
and an outline of future research directions.

1 INTRODUCTION

In the last few years. parallel computers have started
to emerge commercially, and it seems likely that such ma-
chines will rapidly become the most cost-effective source
of computing power. However, developing parallel algo-
rithms is currently very difficult. This is a major obstacle
to the widespread acceptance of parallel computers.

Logic programming, because of the parallelism implicit
in the evaluation of logical expressions. in principle re-
lieves the programmer of the burden of managing paral-
lelism explicitly. Logic programming therefore offers the
potential to make parallel computers no harder to pro-
gram than sequential ones, and to allow software to be
migrated transparently between sequential and parallel
machines.

It only remains to determine whether a logic program-

*Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, IL 60439, U.S.A.

T On leave from SZKI, Donati u. 35-45, Budapest, Hungary

iDepartment of Computer Science, University of Manchester,
Manchester M13 9PL, U.K. Now at: Department of Computer
Science, University of Bristol, Bristol BS8 1TR, U.K.

8Swedish Institute of Computer Science, Box 1263, S-164 28
Kista, Sweden

David H. D. Warren
Alan Calderwood

Peter Szeredil
Manchestert

Seif Haridi
Per Brand
Mats Carlsson
Andrzej Ciepielewski
Bogumil Hausman

SICS

ming svstem coupled with suitable parallel hardware can
realise this potential. The Aurora system is a first step
towards this goal. Aurora is a prototype or-parallel
implementation of the full Prolog language for shared-
memory multiprocessors. It currently runs on Sequent
and Encore machines. It has been developed as part
of an informal research collaboration known as the “Gi-
galips Project”.

The Aurora system has two purposes. Firstly, it is in-
tended to be a research tool for gaining understanding
of what is needed in a parallel logic programming sys-
tem. In particular, it is a vehicle for making concrete,
evaluating, and refining one (or more) parallel execution
models. The intention is to evaluate the models not just
on the present hardware, but with a view to possible fu-
ture hardware (not necessarily based on shared physical
memory).

Secondly, Aurora is intended to be a demonstration
system, that will enable experience to be gained of run-
ning large applications in parallel. For this purpose, it is
vital that the system should perform well on the present
hardware, and that it should be a complete and practical
system to use.

In order to support real applications efficiently and ele-
gantly, it is necessary to implement a logic programming
Janguage that is at least as powerful and practical as Pro-
log. The simplest way to ensure this. and at the same
time to make it easy to port existing Prolog applications
and systems software, is to include full Prolog with its
standard semantics as a true subset of the language. This
we have taken some pains to achieve.

The bottom line for evaluating a parallel system is
whether it is truly competitive with the best sequential
systems. To achieve competitiveness, it is necessary to
make a parallel logic programming system with a single
processor execution speed as close as possible to state-
of-the-art sequential Prolog systems, while allowing mul-
tiple processors to exploit parallelism with the minimum
of overhead. This has been our goal in Aurora.

To summarise the objectives towards which Aurora
is addressed, they are to obtain truly competitive per-
formance on real applications by transparently exploit-
ing parallelism in a logic programming language that in-

820

cludes Prolog as a true subset.

The main purpose of this paper is to describe the issues
that must be confronted in or-parallel Prolog implemen-
tation and detail the decisions and compromises made
in Aurora. We include benchmark tests that point out
the strengths and weaknesses of some of these decisions.
We conclude by describing some directions for further
research.

2 BACKGROUND

In this section we describe the setting in which Aurora
was developed and give a short history of the Gigalips

Project.

2.1 Sequential Prolog Implementations

Prolog implementation entered a new era when the
first compiler was introduced. for the DEC-10 [21]. The
speed of this implementation, and the portability and
availability of its descendant, C-Prolog. set a language
standard. now usually referred to as the “Edinburgh Pro-
log”. The DEC-10 compilation techniques led as well to
a standard implementation strategy, usually called the
WAM (Warren Abstract Machine) [22]. In a WAM-
based implementation. Prolog source code is compiled
into the machine language of a stack-based abstract ma-
chine. A portable emulator of this abstract machine
(typically written in C) yields a fast, portable Prolog sys-
tem, and a non-portable implementation of crucial parts
of the emulator can increase speed still further. A paral-
lel implementation of Prolog is achieved by parallelizing
this emulator.

There are now many high-quality commercial and non-
commercial Prolog systems based on the WAM. A par-
allel implementation can obtain considerable leverage by
utilizing an existing high-quality implementation as its
foundation. We use the Sicstus implementation [7], one
of the fastest portable implementations.

Using a fast implementation is important for two rea-
sons. Firstly, the single most important factor determin-
ing the speed of a parallel version is the speed of the
underlying sequential implementation. Secondly, many
research issues related purely to multiprocessing only be-
come apparent in the presence of a fast sequential imple-
mentation. (Speedups are too easy to get when speed is
too low.)

2.2 Multiprocessors

It is only in the last two years that multiprocessors
have emerged from the computer science laboratories
to become viable commercial products marketed world-
wide. Startup companies like Sequent, Encore, and Al-
liant have made shared-memory multiprocessors com-
monplace in industry and universities alike. They are
relatively inexpensive and provide a standard system en-

vironment (UNIX7*) thus making them extremely pop-
ular as general-purpose computation servers. A similar
revolution is happening with local-memory multiproces-
sors, sometimes called “multicomputers”, but these are
currently more specialized machines, despite their scala-
bility advantages.

What the new breed of machines does not provide is a
unified way of expressing and controlling parallelism. A
variety of compiler directives and libraries are offered by
the vendors. and while they do allow the programmer to
write parallel programs for each machine, they provide
neither syntactic nor conceptual portability. A number
of researchers are developing tools to address these is-
sues. but at a relatively low level (roughly the same level
as the language they are embedded in, such as C' or For-
tran). A goal of the Gigalips Project is to determine
whether it is feasible to propose logic programming as
the vehicle for exploiting parallelism on these machines.

2.3 Or-Parallelism

As is well known, there are two main kinds of paral-
lelism in logic programs, and-parallelism and or-parallel-
ism. The issues raised in attempting to exploit the two
kinds of parallelism are sufficiently different that most
research efforts are focussing primarily on one or the
other. Much early and current work has been directed to-
wards and-parallelism. particularly within the context of
“committed choice” languages (Parlog, Concurrent Pro-
log, Guarded Horn Clauses) [14, 20]. These languages ex-
ploit dependent and-parallelism, in which there may be
be dependencies between and-parallel goals. Other work
[11, 18] has been directed towards the important spe-
cial case of independent and-parallelism, where and-
parallel goals can be executed completely independently.

The committed choice languages have been viewed pri-
marily as a means of expressing parallelism explicitly, by
modelling communicating processes. In contrast, one of
our main goals is to exploit parallelism implicitly, in a
way that need have little impact on the programmer.
This viewpoint has led us to take a rather different ap-
proach, and to focus in particular on or-parallelism.

There are several reasons for focussing on or-parallel-
ism as a first step. Briefly, in the short term, or-parallel-
ism seems easier and more productive te exploit trans-
parently than and-parallelism. However, none of these
reasons precludes integrating and-parallelism at a later
stage. and indeed this is our ultimate intention.

o Generality. It is relatively straightforward to ex-
ploit or-parallelism without restricting the power
of our logic programming language. In particular.
we retain the ability we have in Prolog to generate
all solutions to a goal.

e Simplicity. It is possible to exploit or-parallelism
without requiring any extra programmer annota-
tion or complex compile-time analysis.

