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Foreword

FPrineiples of Statistical Radiophysics is concerned with the theory of random
functions (processes and fields) t:eated in ~lose association with a number of ap-
plications in physics. Primarily, the book Jeals with radiophysics in its broadest
sense, i.2., viewed as a general theov s of cscillations and waves of any physical
nature!. This translation is based =a the second (two-volume) Russian edition.
It appears in four volumes: -

1. Elements of Random Ficcess Theory

2. Correlation Theory of Randourn Processes

3. Elewments of Random Fields )

4. Wave Fropagation Through Raxgiom Media.

The four velumes are, naturally, te a large extent conceptually interconnected
(being linked, for instance, by cross-references); yet for the advanced reader
each of them might be of interest on its own. This motivated the division of
the Principles into four separate voluines.

The text is designed for graduate and postgraduate students majoring in
radiophysics, radio engineering, or other branches of physics and technology
dealing with o:cillations and waves (e.g., acoustics and optics). As a rule, early
in their career these students face problems involving the use of random func-
tions. The bock provides a sound basis from which to understand and solve
problems at this level. In addition, it paves the way for a more profound study
of the mathematical theory, should it be necessary?. The reader is assumed to
be familiar with probability theory.

In progressing from one volume to the next, the reader will see that the
physical problems under consideration become more complex and the mathe-
matical machinery more involved. This results quite naturaily from the course-
oriented origin of the book, based as it is on sumgmarized lecture notes. Their
extensive teaching experience has convinced the authors that such an approach
is preferable to a more uniform presentation. Each.chapter is followed by a num-

1 It should be noted that certain questions in statistical radiophysics are not covered
in this bdbk. For example, it is not concerned with quantum radiophysics and quantum
electronics, nor with statistical phenomena related to the propagation of waves in nonlinear
media, see [1].

? Treatments of the mathematical theory are given, for instance, in [2-9], and more
?pecia.l;led applications of the theory to radiophysics and engineering are to be found in

10-19]. :
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ber of problems worked out in detail. The problems not only serve as exercises,
but in many cases contain additional theoretical material and further literature

references.
.

Moscow, March 1986 _ S.M. Rytov
N ‘ Yu.A. Kravtsov

V.I. Tatarsksi
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Preface

This volume concentrates aimost exclusively on univariate random functions,
i.e., random processes. The main physical questions considered are random
pulse Poisson processes, Brownian motion, fluctuations in Thomson self-oscilla-
tory systems and the action of random forces on dissipative dynamic systems,
both linear and non-linear. These applications help to introduce the reader to
the central concept of random processes, and to several classes of these pro-
cesses: Gaussian processes, continuous and discontinuous Markov processes,
stationary processes, processes with stationary increments, and also to the
elements of stochastic convergence and ergodicity, and stochastic differential
equations. i

Volume 1 was written by S.M. Rytov. The author is indebted to Profes-
sors A.M. Yaglom, M.L. Levin, M.A. Isakovich, V.N. Tutubalin, Ya.l. Khurgin,
and V.P. Yakovlev, whose valuable suggestions and comments contributed im-
mensely to the quality and arrangement of material in some chapters.

Moscow, March 1986 S.M. Rytov
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i. General Introduction

The higher sensitivity of measuring and receiving devices, and hence the im-
proved accuracy of measurement, have resulted in fluctuations playing an ever-
increasing role in various branches of physics and technology. Fluctuations are
known to be random deviations of macroscopic quantities from their mean (for
example, thermodynamic equilibrium) values. Along with the theory of equi-
librium states and the kinetics of physical processes, the theory of fluctuations
is one of the key subjects in statistical physics. The mathematical tools of sta-
tistical physics are not only the classical theory of probability concerned with
random events and variables, but also the much more general theory of random
Junctions. It inclndes both random processes occuring in time (these are consid-
ered in Volumes I and II of this work, i.e., this volume and [1.1]), and random
" fields depending on time and space (Volumes 1II and IV [1.2,3]). The aim of
Principles of Statistical Radiophysics is to introduce the reader to the theory :
of random functions at a physical level of rigor, drawing on specific physical
problems taken mostly from the field of radiophysics.

A word of clarification on what is meant by “physical level of rigor”. We
are familiar with the difficulties encountered in seeking a compromise between )
the requirements of a rigorous presentation of a mathematical theory and the
clarity desirable for a first encounter with the subject. The faultless reasoning of -
a mathematician is on occasion seen by a physicist or engineer as nothing more
- just less convincing ~ than simple and tangible arguments, while these may
lack the rigor demanded by the mathematician. The present book furnishes a
sufficiently sound mathematical basis for independent work, but is in no way
intended as a substitute for a more profound study of the mathematical theory. '

As mentioned above, radiophysical problems are used to illustrate appli- .
cations of the theory, and sometimes to substantiate the need for some of its
techniques. In this context, radiophysice as such is understood in a wider sense
implying the following.

As early as the 1930s L.1. Mandelshtam substantially extended the heuris-
tically very powerful principle referred to as the “isomorphism of laws”. Crudely
speaking, it implies that laws discovered in various branches of physics are (un-
der the appropriate conditions) also applicable to other fields. This principle,
known in linear optics and acoustics since the time of Rayleigh, has led to
the creation and development of the general theory of oscillations and waves
(including nonlinear ones) that has encompassed not only the radio-frequency "
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range and optics and electromagnetic processes in general, but also oscillatory
and wave phenomena of any physical nature, including macroscopic mechan-
ics (in particular. acoustics), quantum mechanics, chemistry, and biology. This
general theory of oscillations and waves is naturally concerned with both deter-
ministic processes and fields, and random (stochastic) oscillations and waves,
irrespective of their fundamental physical nature, or rather with a wide variety
of their physical origin. This is what is meant by “radiophysics understopd in
the wider sense”.

In fact, the very use of the term “radiophysics” is to a certain extent a
tribute to the generalization of the principle of isomorphism due to Mandelsh-
tam.

Of course. fluctuations do not exhaust the enormous variety of stochastic

- phenomena. Yet random variations that occur in completely deterministic sys-
tems have long been known. By way of example we may cite turbulence in a
liquid or gas, developinz under the appropriate conditions, but still within a
purely deterministic description of the medium. Similar examples, along with
the kinetic theory of gases and liquids, strengthened for a long time the con-
viction that such an “intrinsic” stochasticity (one of the major problems of the

- so-called ergodic theory} presupposes the presence of an immense number of
degrees of freedom in the system considered. About fifteen years ago it was
found, however, that this is not required at all: autostochastic behavior ap-
peared to be possible in dynamic systems as well, if the phase space had a
dimensionality of three or more. We mention this in order to stress that this
book is not concerned with the issues of autostochasticity in dynamic systems.
It only considers those random phenomena (including fluctuations) in dynamic
systems that occur as a resul. of external random actions. Mathematically, this
implies that the phenomena to b= considered are from the very beginning de-
scribed by random functions explicitly introduced into the equations of motion
for the system. This implies the transition from dynamic equations to stochastic
ones. '

Stochastic equations are introduced in this volume, but a more profound
development of the theory and applications of these equations are to be found
in Volumes III and IV [1.2,3].

Let us take a closer look at physical objects and phenomena covered by
stochastic rad ophysics. Two types of problem can be distinguished. Proba-
bilistic properties of random actions on a system are either derived from a
micromodel. i.e.. from stochastic assumptions at a molecular level, or they are
from the outset selected at the macroscopic level, i.e, within a phenomeno-
logical approach tailored to account properly for the experimentally observed
behavior.

Problems of the first <ind.are, for instance, concerned with the therma!
motion of microparticles, such as microcharges - electrons, ions, and so on. At
the macrolevel this results - thermal fluctuations of a wide variety of quantities,
e.8., density. pressure, temperature, current, voltage, the strength of electric
and magnetic macroscopic fields, etc., etc.’ Thermal flu-tuations give rise to

2



Brownian motion, molecular scattering of light (both within and on the surface
of a medium), so-called thermal noise in radio-engineering, optics and acoustics,
thermal radiation of bodies, and other phenomena.

Another example is the random variation of the number of particles in
the electron fluxes in thermal- and photo-emission — the so-called shot effect
ensuing from the discrete nature of microcharge carriers.

Worthy of special mention is a fairly common type of fluctuation - the
flicker effect — which occurs in vacuum tubes (where it is associated with local
variations in the emission of electrons from the cathode), contacts, semicon-
ductors, electrolytes, and nonmetal resistors. Evidently, the prevalence of the
flicker effect cannot be associated with a general cause such as, for example,
the finite dimensions of a macrosystem (the importance of its dimensions being
the greater the slower the fluctuations).

One more example is magnetic noise (including the Barkhausen effect)
due to chaotic remagnetization of domains in ferromagnets subjected to time-
dependent magnetic fields.

Problems of the second kind, where the stochastic behavior of random ac-
tions is simply specified at the macrolevel, also involve either random processes
or random fields. In the case of discrete systems, random functions may be
introduced to describe fluctuations of the parameters of the system and/or of
the external forces. We deal here with stochastic ordinary differential equations.
Under this heading is included the important special case of self-oscillatory sys-
tems (the present book and Volume II [1.1]). If the oscillations are periodic but
not harmonic then the presence of fluctuations results in non-monochromaticity
of the self-oscillations. This nonmonochromaticity is to a large extent associ-
ated with the stability of the frequency and the accuracy with which it can be
measured (and hence the accuracy of time measurements).

Such a “macrostochastic” approach can also be applied to continuous sys-
tems described by stochastic partial differential equations which include a large
variety of problems concerned with wave propagation in media with random
inhomogeneities which cause wave scattering, random pulsation of refraction,
fluctuations of the intensity and phase of a wave at the po'nt of observation,
and so forth. In these cases, the inhomogeneities of the medium are described
by random fields with given stochastic characteristics.

Similar problems occur not only in wave propagation in free space, but
also along guided lines (wire feeders, wave-guides, optical fibers), whose inho-
mogeneities can be thought of as random. However, though Volumes IIl and IV
[1.3,4] are mainly devoted to wave propagation in random media, they do not
refer to these particular questions. The same holds for the important problems
arising from random inhomogeneities in emitters (in particular, in composite
antenna systems; see [1.4]).

It should be emphasized that autostochasticity does not exclude such a
“macrostochastic” approach. For instance, media may be random owing to
turbulence. But the emergence and development of turbulence as such are the
subject of the ergod.: ihoory, However, when turbulence is considered from



the point of view of its influence on the propagation of mechanical or electro-
magnetic waves, then the inhomogeneities arising from it may be described by
introducing aptly chosen random fields into wave equations.

For transverse waves, questions related to the interference of oscillations
and waves, their temporal and spatial coherence, and also polarization, consti-
tute a rich and important field of interest. In this context the so-called corre-
lation theory of random functions is widely used. Though it represents a fairly
restricted part of the general theory of random functions, it is so important that
the whole of Volume II [1.1] is devoted to it. The second volume deals with
the correlation theory of random processes, but some of its generalizations to
random fields are contained in Volume III {1.2].

When receiving radio signals, the quality of the signal is influenced by
fluctuations (noise) in the receiver and the measuring device, the transforma-
tion of external and internal noise (in a wide variety of signal transducers), the
noise immunity of the receiving systems, and so on. Some of these problems,
though of primary practical importance, aré of no physical interest. Neverthe-
less, a number of them are discussed to illustrate the techniques of the theory
of random functions (this volume and {1.1}). A further reason for not going
into these questions at length is that they are amply dealt with in a multitude
of existing monographs and textbooks, The reader is referred to this literature,
see also the references given in the Preface.

The preceding comments allow us to put into the proper perspective the
motives underlying the selection of the subject matter and structure of the
book [1.1-3}. - :

On the one hand the above, rather incomplete list of pertinent problems
demonstrates that the field of statistical radiophysics covers a tremendous va-
riety of phenomena - whether the term is understood in its wider or narrower
sense. It is almost impossible to reflect all the diversity of the statistical prob-
lems the subject covers. Moreover, such an attempt could hardly be.justified
since an extensive overview would necessarily be superficial ~ this alone ren-
dering it practically useless. On the other hand, the mathematical techniques
of statistical radiophysics are more involved and powerful than those of the
classical theory of probability. A thorough treatment of the theory of random
functions would constitute a special mathematical course.

In view of all this, we believe it appropriate to single out a few radiophysical
issues interesting and important in their own right, which also introduce the
reader to the elements of the theory of random functions, its techniques and
applications. The treatment presupposes an acquaintance with the classical
theory of probability, although in the first two chapters of Volume I we recall
some of its fundamental concepts and theorems for the benefit of the reader.



2. The Bernoulli Problem

This and the following chapter provides an introduction to the theory of random
processes. Therefore, in these two chapters we confine ourselves to the classical
theory of probability and deal only with random events and quantities. The
purpose of this chapter is two-fold:

First, to clarify the connection between the mathematical concept of prob-
ability and the ways in which this concept is applied. One frequently encounters
a lack of clear understanding of the fact that the measurement of the proba-
bility of an event through the relative frequency of its occurrence is based on
an independent postulate not included among the axioms of the mathematical
theory. At the same time, this postulate is necessary for any applications of the
matheinatical theory, to physics in particular (Sects. 2.1,2).

Second, referring to the binomial law (Sect. 2.3}, a simple example of a
discrete probability distribution, it is demonstrated that a common approach
can be used for some seemingly different problems such as: the fluctuations of
gas density, the fluctuations of the intensity of the sum of harmonic oscillations
with random amplitudes, the one-dimensional Brownian motion, and the shot
effect (Sects. 2.4,5). Some of these problems involve processes evolving in time.

The binomial law has the additional feature of having extremely important
asymptotics: the discrete Laplace and Poisson distributions (Sects. 2.5,6) and
the continuvus Gauss distribution (Sect. 2.7).

2.1 The Physical Concept of Probability

Experience has shown that a purely mathematical presentation of probability
theory does not always lead to a clear understanding of the principal concepts
important for the physicist. We shall, therefore, dwell briefly on what proba-
bility is and how the physicist uses this concept. . _

It is well-known that probabilities had been calculated long before the true
meaning of probability was perceived. The theory originated from attempts to
calculate the chance of success, of fair stakes, etc., in so-called games of chance
such as the throwing of dice, the tossing of coins, and some card games, i.e.,
those games in which the outcome depends on chance alone and in no way on
the player’s ability and dexterity. In this sense these games might be called
frivolous. But, as mathematicians like to remark, the intellectual game of chess

w



has made practically no contribution to science, whereas the frivolous game of
dice has contributed so much. Why? ’

The truth is that chess obeys its own special rules, and all the situations
encountered here lie within the domain of these rules, i.e., they cannot be
generalized. In contrast, the throwing of dice is elementary and exhibits a pure
form of an extremely general statistical law — the stability of relative frequencies
with increasing number of tests. If n throws of a die yield n, times ¢ points,
then the relative frequency n,/n shows a surprising stability as n increases. This
empirical fact is independent of whether the die is good or bad. An a priori
false die, e.g., one containing a piece of lead in one of its faces, exhibits stability
of the quotient n;/n, though different faces have different relative frequencies,
not equal to 1/6.

Thus, for n,/n to be stable does not require a “good” die, and specific
“asymptotic” values of n;/n are not predetermined by the very fact of stability.
This follows either from a statistical ezpersment especially performed or from
data accumulated previously. By saying that for a good {i.e., suitable for the
game) die the values of n,/n are about 1/6, we give in essence a definition of
the die that is to be regarded as good.

It is frequently believed that the value n,/n~1/6 follows from the classical
definition of probability due to Laplace

_ favorable outcomes
‘equally likely outcomes

This definition is too restrictive since it does not cover those cases where the
possible outcomes constitute an infinite set, countable or continuous. But evern:
if we do not wish to expand the scope of this definition, we easily see that this
is circular reasoning, because equally likely here means nothing but equally
probable, or eguiprobable. Hence, the probability P is here “defined” through
probability. This is simply a rule for calculating the probabilities of favor-
able outcomes using a preassigned uniform distribution of probabilities of all
possible outcomnes. Although we think that the Laplace definition yields the
probability P = 1/6 of the appearance of each face of the die, in fact, we get
from this definition only what we have incorperated into it, namely, the equally
likely appearance of each face. In exactly the same way we assume that (in a
single draw from a deck of cards) one is equally likely to obtain any one of its
36 or 52 cards.

What is behind these self-evident assumptions? They are sometimes sup-
ported by the use of the so-called principle of insufficient grounds, which states
that if the die is geometrically accurate and made of uniform materlal etc.,
then there are no grounds to expect P#1/6.

Intuitively, this may be clear. A person who has not the slightest idea of
what a statistical experiment involves ¢an deduce the eqmprobabxhty of the
faces of the fair dice or of either of the coin’s sides appearing by simply ex-
ercising common sense. Here the equiprobability is natural, if not self-evident.
This is suggested by the finite number of possible outcomes and the symmetry.

6



But without the symmetry or, say, with continuous possible outcomes, common
sense jibs or simply fails. With the false die, only a statistical experiment with
the given die enables us to estimate the probability of various faces. Difficulties
encountered in the selection of equally likely outcomes, constituting a continous
set, were demonstrated marvellously by J.L.F. Bertrand in a number of geo-
metric problems in his book Calcule des Probabilitiés (1888). These so-called
Bertrand’s paradoxes with geometric probabilities are another illustration of
the inadequacies of common sense or intuition in the more complex situation
under consideration [2.1]. Moreover, when we say that in simple cases an in-
tuitive prediction is correct, this very “correctness” only implies that a test
by statistical experiment will bear out the prediction. Thus, in the final anal-
ysis even the self-evident assumption of equiprobability implies an enormous
number of tests to be actually performed with certain conditions observed, i.e.,
accumulated statistical experience.

A detailed history of the evolution of probability theory is beyond the scope
of the book. This long history has witnessed the emergence of many varied
and conflicting approaches to the concept of probability. The development of
probability theory into an axiomatic branch of mathematics took about three
centuries. '

A mathematical theory originating from some (usually fairly simple) ideas
taken from everyday life tends to free itself from its empirical roots, thus striv-
ing to attain the status of an axiomatic theory. In the case of the theory of
probability the process only terminated in the 1930s, when A.N. Kolmogorov
formulated his axioms that made probability theory, a branch of the measure
theory. It should be noted that as early as 1917 S.N. Bernstein stressed the
need for an axiomatization of probability theory and suggested a concrete set

.of axioms, which eventually turned out be appreciably less convenient than
those proposed by A.N. Kolgomorov.

~ Today, the mathematician treats probability as a non-negative, unit-norm-
alized, completely additive set function, defined on an algebra of subsets. An
event A is represented by a set A of points of the space of possible elementary
outcomes of the experiment or test under consideration. The probability P{A}
of event A is a set function, such that if it is defined on sets Ajg,..., Ay, it may
also be defined on a set consisting of all the points constituting at least one of
the sets Ajy,..., An, and also on the set of points belonging simultaneously to
all the sets Ay,..., Ap [2.2,3]. This function obeys the following three axioms:

Aziom 1. The probability P{ A} of an event A obeys the inequality P{4}>0.

Aziom II. For a certain event U the equality P{U} = 1 is valid.

Aziom III. For mutually exclusive events Ag (kK = 1,2,...,n; n being
arbitrarily large) the relation

P{f:Ak} = i P{A}
eo=1 k=1

holds. The summation signs on either side of the equality have different mean-



ings. On the left, the sign relates to the probability of at least one of the events
Apg, s0 that 3P, Ag is an event (A; or Ay,..., or Ap), whereas on the right
it is a conventional sum of non-negative numbers P{A.}.

The certain event mentioned in axiom II corresponds to the set U consist-
ing of all imaginable elementary outcomes, and hence all the other events A
are subsets of U.

Axiom III (the additivity axiom) covers also the case of n = co. That is
why P is referred to as a completely additsve function.

Axioms I-]1l, supplemented by the definitions of a number of related con-
cepts (e.g., those of random variable or of mathematical expectation), lie at
the foundation of the whole theory of probability.

Of course, examination of these axioms reveals the connection between
the abstract quantity P and the empirical relative frequency, but this is a
genetic connection that relates only to the origin of the axioms, and not to their
content, from which all traces of the underlying empirical facts have already
been removed. Therefore, after being exposed to this abstract definition of
probability, a physicist, an engineer, an economist, etc., i.e, one dealing with
real problems and events, is bound to ask what he should do with such a
completely additive function, and how he should relate the formulas of this
mathematical theory to the real world. The situation here is the same as in
any physical theory.

Equations and formulas for certain mathematical quantities (symbols) do
not (in themselves) constitute a physical theory. The latter requires a knowl-
edge of how to determine from real things and events the numbers to be inserted
into mathematical relations. That is, the values of the respective mathematical
symbols or, in other words, a way of measuring these quantities!. Of course, a
physical theory is a single entity. Its mathematical and measurement ingredients
are by no means independent of each other, yet, one cannot directly substitute
one for the other. For this reason, in all physical (and in general practical)
applications of the mathematical probability theory, the latter should be sup-
plemented by at least one (realizable and concrete) measuring technigue for the
respective quantity P, the probability. It is only natural that we should turn to
the relative frequency when looking for this technique or measurement axiom.

We assume that the probability of an event has been measured (approxi-
mately, as in any measurement) in terms of the relative frequency of its occur-
rence in a sufficiently long series of tests performed under certain unchanged
conditions, relying on a sufficiently large ensemble of homogeneous systemns,
i.e., in a statistical experiment. Since it is an independent postulate that does
not belong to the axioms of the mathematical theory of probability, this as-
sumption is by no means the only one and does not a priori ensure success.
Of course, a basic requirement is that it be consistent with the mathematical
theory. As we shall see below (Sect.4.6), the “frequency” measurement axiom

! This, at any rate, is the approach to measurement in classical {pre-quantum) physics.

But the equations of quantum mechanics also contain quantities whose direct measurement
is not required. (See Ref.[2.4], Lectures in Quantum Mechanics).
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