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Preface

This book consists of three chapters and we shall deal entirely with continuous local
martingales. Let M be a continuous local martingale and let

£(M) = exp (M — 3(M))
where (M) denotes the increasing process associated with M. As is well-known, it is
a local martingale which plays an essential role in various questions concerning the
absolute continuity of probability laws of stochastic processes. Our purpose here is to
make a full report on the exciting results about BMO in the theory of exponential
local martingales. BMO denotes the class of all uniformly integrable martingales
M = (M,, F;) such that

e 5], <

sup
T

where the supremum is taken over all stopping times 7. A martingale in BMO is a
probabilistic version of a function of bounded mean oscillation introduced in [31] by
F. John and L. Nirenberg.

In Chapter 1 we shall explain in detail the beautiful properties of an exponential
local martingale. In Chapter 2 we shall collect the main tools to study various prop-
erties about continuous BM O-martingales. The fundamentally important result is
that the following are equivalent:

(a) M e BMO.

(b)  &E(M) is a uniformly integrable martingale which satisfies the reverse Holder

inequality :
(Ry)  EEM)E, | Fr] < CE(M )y
for some p > 1, where T' is an arbitrary stopping time.

(¢) &(M) satisfies the condition:

(Ap) supyp <

E {{E(M)T/f(‘”)x}’%lI}}J

-
for some p > 1.
These three conaitions were originally introduced in the classical analysis. For ex-

ample, the (A,) condition is a probabilistic version of the one introduced in [62] by
B. Muckenhoupt. In Chapter 3 we shall prove that it is a necessary and sufficient
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condition for the validity of some weighted norm inequalities for martingales. Fur-
thermore, we shall study two important subclasses of BMO, namely, the class L.,
of all bounded martingales and the class H. of all martingales M such that (M),
is bounded. In general, BMO is neither L. nor H, and it is obvious that there is
no inclusion relation between L., and H.. In this chapter we shall establish very
interesting relationships between the condition (R,) and the distance to L., in the
space BMO. One of them is the result that M belongs to the BM O-closure of L
if and only if £(AM) satisfies all (R,) for every real number A. In addition, we shall
prove that the (A,) condition is remotely related to the distance to [l in the space
BMO.

The reader is assumed to be familiar with the martingale theory as expounded in
[12] or [60].

[ am happy to acknowledge the influence of three of my teachers T. Tsuchikura,
C. Watari, and P. A. Meyer. [ would also like to thank my colleagues M. Izumi-
sawa, M. Kaneko, M. Kikuchi, M. Okada, T. Okada, T. Sekiguchi, and Y. Shiota for
many helpful discussions. Finally, thanks to Mrs.Yoshiko Kitsunezuka for the help in

preparing this manuscript.

N. Kazamaki
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Chapter 1

Exponential Martingales

1.1 Preliminaries

Let (2,F, P) be a complete probability space with a filtration (F;) satisfying the
usual conditions. The usual hypotheses means that

(i) Fo contains all the P-null sets of F,
(i1) Fiy =ust Fu forall t > 0.

Definition 1. 1. A real valued stochastic process M = (M, F;) is called a martin-
gale (resp.supermartingale, submartingale) ¢f

(i)  each M; is Fi-measurable, i.e, M is adapted to the filtration (F),
(i1) M, € Ly for every t,
(i)  if s <t, then E[M; | Fs] = My a.s.  (resp. E[M, | F,] < M,, resp.> M,).

As is well known, a one-dimensional Brownian motion is a typical martingale. It
should be noted that the notion of a martingale depends merely on the filtration (F;),
but also on the probability measure dP. An adapted process M = (M,, F;) is said to
be a local martingale if there exists a sequence of increasing stopping times 7,, with
lim,—eo T, = 00 a.s. such that (Myar,li1,50), F:) is a martingale for each n. Such
a sequence (T,) of stopping times is called a fundamental sequence. Recall that a
stopping time 7' is a random variable taking values in [0, 00] such that {T' <t} € F,
for every t > 0.

Throughout this survey, we suppose that any local martingale adapted to this filtration
is continuous. It is well-known that the Brownian filtration satisfies this assumption.
Note that the following three properties are equivalent :

(a) any local martingale is continuous,

(b) any stopping time is predictable,

(c) for every stopping time T and every Fr-measurable random variable
U, there exists a continuous local martingale M with My = U a.s.

The equivalence of (a) and (b) is well-known, and the equivalence of (a) and (c) was
established by M. Emery, C. Stricker and J. A. Yan ([16]). It seems to me that the
essential feature of our problems discussed here appears in this case, which is the
reason that we deal entirely with continuous local martingales. We generally assume
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that My, = 0. Let us denote by (M) the continuous increasing process such that
M? — (M) is also a local martingale. Let ¢ > 0 and let {T7"};—01....x, be a sequence of
stopping times such that 0 = T3 < T < --- < T =t and lim, .o maxo<ick, (7}, —
T") = 0. Then from a celebrated result of C. Doléans-Dade([8]) it follows that

kn—1

> (Mry, — Mrn)* — (M),

1=0
in probability as n — co. An adapted process X = (X, F;) is said to be a semi-
martingale if X; can be written as M; + A; where M is a local martingale and A is a
stochastic process that is locally of bounded variation. Let (X) = (M) as usual.

The next formula plays an extremaly important role in stochastic calculus.

Theorem 1. 1. (Ité’s formula)
Let X = M + A be a continuous semimartingale, and let f be a real valued function
on R which is twice continuously differentiable. Then

(L.1) FX) = f(Xo) + [ P +5 [ 7)),

Note that the second term on the right hand side is the stochastic integral.

Proof. We shall sketch its proof. Let f € C%. The proof rests essentially on Taylor’s
theorem :

(12) Fw) = () = @)y = 2) + 3@y = 2 + R(zy)

where |R(z,y)| < r(Jy — «|)(y — x)?, such that r : Ry — R, is an increasing function
satisfying lim, o r(u) = 0. Let now X be a continuous semimartingale. Without loss of
generality we can take Xy = 0, and further by stopping at 7,, = inf{t : | X;| > m}, we
may assume that X is bounded. Let ¢ be a fixed positive number, and let {T7*};=01.... k.
be a sequence of stopping times such that 0 = 7¢* < 17 < --- < T¢ = t and

limy, —.co Maxo<ick, (173 — T7*) = 0. Then it is not difficult to see that

kn—1

2 (X, = X1p)* — (X)

1=0

in probability as n — oco. From (1.2) it follows that

5 () -1 ()
kn—1
=3 7 (Xzr) (X, — X17)
1=0
k kn—
#3817 (5 (o, =)+ 5 ()

The first sum in the last expression converges in probability to the stochastic integral
s f'(X,)dX,, and the second sum converges in probability to 3 [j f'(X,)d(X),. So it
remains to consider the third sum. To estimate it, observe that

) =0,

lim maxr ('XTn — X7n
i 141 '

n—oo
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which follows from the assumption that X is bounded and continuous. Then

kn—1

> R (Xrp, Xy,)

1=0

S max 7 (’XT_H —XTn
05{(/‘,, 141 t

and the right-hand side converges in probability to 0 as n — co. Thus (1.1) holds. O

The Ito formula shows that the class of semimartingales is invariant under com-
position with C%- function.

Theorem 1. 2. If M is a continuous local martingale, then

(1.3) E(M); = exp (Mt - %(M)t) (0< 1< o)

is also a local martingale such that E(M)y = 1.
Proof.  Applying Ito’s formula with X = M — (M) and f(z) = ¢” we obtain

i
(M) =1+ [ £(M),am,,
0
which completes the proof. O

In [55] B. Maisonneuve gave a nice proof without using Ito’s formula, which will
be presented at the end of this section.

The generalization to non-continuous local martingales was done in 1970 by C.
Doléans-Dade ([9]). She proved that if X is a semimartingale with X,_ = 0, then the
solution Y of the stochastic integral equation

t
V=14 [V, dx,
0
is given by the formula

¥ = gap (xt - %(XC)) I (1+ AX,)e 2%

0<s<t

where AX; = X; — X,- and X° is the continuous part of X.

A noteworthy fact is that, supposing that the exponential local martingale E(M)
s uniformly integrable, it is not necessarily a true martingale. We first give such an
example.

Example 1.1. Let B = (B, F;) be a 3-dimensional Brownian motion starting at
a (a # o),and for 0 < r < |a| let 7, = inf{t : |B;| < r}. Then it is well-known that
P(r, < o) =r/|al.

Let now h be the function defined by h(z) = |a|/|z| for z € R*\{o} which is obviously
superharmonic in R® and harmonic in the domain {z € R® : |z| > r}. Then the
process Z defined by Z, = h(B;) (0 < t < o0) is a positive supermartingale such
that Zp = 1. By Doob’s convergence theorem Z; converges almost surely and in
Ly as t — oo. Then, the family {Z;}o<icco being compact in Ly, Z is uniformly
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integrable. Next, let T, = 7/, (n = 1,2,---). It is clear that T, T oo a.s. Moreover,
ZT» = h(BT") is a martingale, because k is harmonic in {z € R®: |z| > 1/n}. Namely,
Z is a local martingale which is uniformly integrable. However, it is impossible that
7 is a martingale. Observe that Z = £(M) where M, = [; Z7'dZ, (0 <t < o).

Generally, we have E[E(M),] < 1 for every t, because E(M) is a positive super-
martingale with £(M), = 1. Therefore, it is a martingale if and only if E[E(M),] =1
for every t. But the direct verification is usually hard to carry out. We shall deal the
problem of finding sufficient conditions for £(M) to be a martingale in Sections 2 and
4.

An easy calculation shows that

E(ME(=M) = exp(—(M)), E(M)=E€ (%M) - (—%(M))

From these relations one can immediately derive that

(1.4) {E(M)oe =0} = {{M),, = oo}

Example 1.2. Let B = (B, F;) be a one dimensional Brownian motion starting
at 0. For each ¢t > 0 we have

E[E(B).]

Il

© t 1 z?
/_mexp (:1: - 5) mexp (_§Z> dz
oo ] (z —t)?
= /_Oo\/‘.ﬁt_exp (— 57 )(l;r

= |

and hence £(B) is a true martingale. However, since £(B)e = 0 a.s., it is not a
uniformly integrable martingale.

The martingale property of £(B) is used effectively in the book of Mckean ([56]) for
computing the distribution of quantities associated with Brownian motion. In the
following we give such an examples.

Example 1.3. Let 7 = inf{t: B; = at + b} where a ¢ R and b > 0. Then we have
(1.5) P(1 < o0) = exp(—2a™*h).

To see this, observe that £(aB™) < exp(ab). This implies that £(aB7) is a uniformly
integrable martingale. Then

1 = FElf(aB" )] = E [exp (aaT + ba — 012%> 5§ & oo] .

If a > 0, setting a = a + va? 4+ 2 we have
Elexp(ab+ bva? + 2\) exp(—A7) : 7 < o0] = 1,

that is, Elexp(—=AT) : 7 < oo] = exp(—ab — bv/a? +2X). Letting A — 0 we obtain
(1.5).
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Theorem 1. 3. (D. W. Stroock and S. R. S. Varadhan [80])
Let M = (M,, F;) be a continuous process and let A = (A, F;) be a continuous process
of finite variation such that Ag = 0. Suppose that for sufficiently small A the process
ZWX) defined by
1.
Zt“) = exp (AMt - EAZAt)
is a local martingale. Then M is a local martingale with A = (M).

Proof. We sketch the proof. By the assumption there is a Ay > 0 such that for any
A with [A] € Ag ZW is a local martingale. Let now 0 < s < t. The usual stopping
argumment enables us to assume that both exp(AoM;) and A, are integrable where
M} = supye,<, |M,|. Then for every A with |[A| < Ay Z™ is a martingale, so that for

every D € F,
/ ZMdp = / ZMdp.
D D

Differentiating the both sides with respect to A we have
(1.6) /D(M, -4 zMdp = /D(Ms — AA)ZWdP.

Noticing Zé'\) = 1 and setting A = 0 gives
/ M,dP = / M,dP (D€ F,).
D D

This implies that M is a martingale. Further, taking again the derivatives of the both
sides in (1.6) with respect to A at A = 0, we find that M? — A is a martingale, that
1s, A = (1‘1) O

Remark 1.1. The continuity of the process A and the condition Ay = 0 are
essential for the validity of this theorem (see J. Stoyanov [78],p.256).

The extension of Ito’s formula to functions of several semimartingales is the fol-
lowing.

Theorem 1. 4. [f X = (X', X% ... X") is an n-tuple of continuous semimartin-
gales and f : R" — R has continuous second-order partial derivatives, then

f(Xe) = f(Xo)

n t ’ 1 t . :
:;/0 DFX)X +5 3 [ Dyf(X)d(x,x0),.

1<i,j<n

For the proof, see [12].

A supplementary note. We close this section with another proof of Theorem 1.2
given in [55] by B. Maisonneuve. It is based on the next two lemmas.

Lemma 1. 1.  Let f = (fn,Gn)n=01.2, be a martingale, and let
oIn
R N N AT, S
[T Ele?1Gini]
where Af; = fi— fioy (1=1,2,--+). Then g = (9o, Gn) is a martingale.
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This follows immediately by an elementary calculation.

Lemma 1. 2.  Let M = (M;, F)o<t< be a continuous local martingale. Then for
each t > 0 there exist partitions T, : 0 = t§ <t} < --- < tr =1t of [0,t] such that
limy, oo Max;<icm, (17 —t7;) = 0 and

I B [e2"21 7] — exp(3(M)) as (n— oo)

1=1
where AMt? =My — 1”‘."_1 (1=1,2,---,my).
Proof. Let M be a continuous local martingale. The usual stopping time argument

enables us to assume that |[M| < K for some constant K > 0.
Let now h(z) = ¢ —1 — z and k(z) = log(1l + z) — z. Then

2

(1.7) 0 < h(z) < ffz—elf* (z € R)
12
(1.8) h(z)— ) <Clz]* (|| € 2K)

(1.9) —g<k(;r)§0 (0<z < o0),

where the constant C' depends only on K.
For a partition I' : 0 = tg < t; < -+ <ty < t,, =t of [0,¢], we set

It = &lax (ti —tiz1)
U = ER(AM,)|F,. ]

W, = E[h(AMt‘)—%AMf'

fl,_,] .

Pr = [ Elexp(AM,)\F,).

i=1
Then, combining (1.7), (1.8) and (1.9) with the sample continuity of M shows that

E [i'W” < CE [f]AM,.P]

=1

< CE iup |AM,, |ZAM2J — 0 (]| — 0),
B MU € 52 BIERU)IF,.. )

il
L
il

E

E[
o

M 2
eXP(IAM:,I)‘ 7":._,] }

&

sup AM} ZAMZ} — 0 (n— o0).

1<j<m

i
&
>

IA
M Do =
NgE

i

"\

IA

IN
>
=
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On the other hand, since E[exp(AM,,)|F;,_,] = 1 4 U;, we have

o B

Pr = [[Q+U)

=1

= exp {Z Uity k(Ui)}
=1 =1
1 m m
= exp{iz:E[Aleft__l] +ZW1+Zk(U,)}
=1

=i =1

Recall that .
S E[AMEF,] — (M), in Lyas T =0
=1
by the well-known result of C. Doléans-Dade. Then there exists a sequence of parti-
tions ', : 0 =t§ <t} <--- < tp =1t of [0,t] such that
1

Pr, — exp (5(/\/]),) a.s (n — o00).

Thus the lemma is proved. m]

Now, let 0 < s < ¢. Without loss of generality we may assume that s € I';, for

every n, namely, s = t{ for some k, < m,. Let I';, be the partition :0 = t§ <} <
< < tE = sof [0,s] and let

kn
Qry, = [[ E [exp(AMg)|Fin ] -
i=1

Then Qr;, — exp(3{(M),) a.s (n — oo) as is already stated above, and from
Lemma 1.1 it follows that

eM ] eMs
E|—I|F|=—=—.
[Prn )
Thus, letting n — co we obtain
eM eMs
. L%<M> f*] = o

which completes the proof.

1.2 The L,-integrability of £(M)

As is well-known, exponential martingales play an essential role in various questions
concerning the absolute continuity of probability laws of stochastic processes. How-
ever, £(M) is not always a uniformly integrable martingales as stated before, and it is
often difficult to verify the uniform integrability of £(M). In 1960, I.V. Girsanov([23])
showed that if (M)., is bounded, then £(M) is a uniformly integrable martingale.
In 1972, this assertion was proved by I.I. Gihman and A.V. Skorohod([22]) when
exp((1 + 6)(M)w) € Ly for some é > 0 and then by R.S. Lipster and A.N. Shiryayev
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([54]) when exp((3 + 6)(M)s) € Ly for some § > 0. After that, A.A. Novikov([64])
gave a nice criterion. In this section we improve his result.
We first prove the following result, from which a simple criterion can be derived.

It is remarkable that the constant 2—(\4/_;%) is the best possible, and then its proof is

extremely simple.

Theorem 1. 5. Let 1l <p<oo and p~' + ¢! = 1. Suppose that
sup F [exp <LM1>] < 00,
T 2(yp—1)

where the supremum is taken over all bounded stopping times T'. Then E(M) is an
L,-bounded martingale.

Proof. Forl <p<oo,letr=(/p+1)/(y/p—1). Then the exponent conjugate
to ris s = (/p + 1)/2, and note that (¢ —\/q/r)s = \/p/{2(\/p — 1)} by a simple

calculation. Since we have

E(M)? = exp (\/gM - g(/u)) exp{(q - \/?) M} ,

an application of Holder’s inequality shows that for any stopping time S

E[E(\/q_ﬂ”)s]%E [exp { (q - \/g) SNIS}] i

VYR | C
SL}PE[p{ﬂ\/Z_}—l)]WT}] < oo.

This completes the proof. O

=
9
5
IA

IA

Remark 1.2.  Let M be a right continuous local martingale such that AM > 0
and suppose that E[exp(%[M],}?)] < oo for some A > 0. Then J. Yan proved in ([86])
that £(M) € H, with r = W]I\'\'—_l fl<K <4andr = ,\2—];2 if K >4. In [52] D.
Lépingle and J. Mémin improved his result.

Remark 1.3.  H. Sato gave in [71] the following interesting result : Let M be a
stochastically continuous additive process with paths which are right continuous and
have left-hand limits at every point. If My = 0, E[M,;] = 0 and AM, > —1 for every
t, then all of the following statements are equivalent.

(i M* e Ly

(11) M is uniformly integrable.

(i1) M, converges almost surely as ¢t — oo.
(iv) E(M)y > 0.

(v) &(M) is a uniformly integrable martingale.
(vi

vi) E(M)* € Ly

Now, by using Theorem 1.5 we can give a simple but usefull criterion for the
uniform integrability of £(M).
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Theorem 1. 6.  Suppose that
sup £ [exp (lMT)] < 00,
T 2

where the supremum is taken over all bounded stopping times T. Then E(M) is a
uniformly integrable martingale.

Proof. Let 0 < a < 1and choose p > 1 such that \/p/(\/p — 1) < 1/a. Then by the
assumption £(aM) is an L,-bounded martingale, and so it is obviously a uniformly
integrable martingale. Since £(aM) = E(M)* exp{a(l — a)M}, by using Holder’s
inequality with exponents a=? and (1 — a?)~! we find

IN

E[f(M)oo]“YE {exp (ﬁMx” e

2a(1—a)

1 = E[€(aM)]

IN

E[E(M).)" E [exp <%Mm)]

The second term on the right hand side converges to 1 as a T 1. Therefore we have
1 < E[€(M)s], which completes the proof. O

Example 1.4. For0<a < oo, let 7, =inf{t > 0: B, = a}. Let now A > 0. Then
1
sup B [exp (EB}“)] < e and so E[£(V2AB™)+] = 1 by Theorem 1.6. Then we have
T

Elexp(=A7,)] = exp(—av/2]X),

and, applying the inversion formula for the Laplace transform gives

2

P(r, =t) = V2nt3aexp (_a_) .

2t

Note that the converse of this theorem is not true (see Example 1.13). As a corollary
we can obtain the following criterion, because

E [exp (%MT)] <E [exp (%WH)]%

for every stopping time 7.
Corollary 1. 1 (A. A. Novikov [64]).  Suppose that

E [exp (%(M)oo)] < oo.

Then E(M) is a uniformly integrable martingale.

This is known as Novikov’s criterion. Note that 1/2 is the best constant in these
criteria. Following the idea of Novikov, we exemplify it below.

Example 1.5. For 0 < a < 1, let us define the stopping time

T =inf{t: B, < at — 1},



