N
q-
(o))
N
v
O
=
il

Feng Bao
Robert Deng
Jianying Zhou (Eds.)

Public Key
Cryptography -
PKC 2004

7th International Workshop
on Theory and Practice in Public Key Cryptography
Singapore, March 2004, Proceedings

DO



Feng Bao Robert Deng
Jianying Zhou (Eds.)

Public Key
Cryptography —
PKC 2004

7th International Workshop

on Theory and Practice in Public Key Cryptography
Singapore, March 1-4, 2004
Proceedings

@); Springer




Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Feng Bao

Robert Deng

Jianying Zhou

Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
E-mail: {baofeng,deng,jyzhou} @i2r.a-star.edu.sg

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, K.4.4,K.6.5

ISSN 0302-9743
ISBN 3-540-21018-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

(© International Association for Cryptologic Research 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10987001 06/3142 543210



Preface

PKC 2004 was the 7th International Workshop on Practice and Theory in Public
Key Cryptography and was sponsored by IACR, the International Association
for Cryptologic Research (www.iacr.org). This year the workshop was organized
in cooperation with the Institute for Infocomm Research (I2R), Singapore.

There were 106 paper submissions from 19 countries to PKC 2004. That
is the highest submission number in PKC history. Due to the large number of
submissions and the high quality of the submitted papers, not all the papers that
contained new ideas were accepted. Of the 106 submissions, 32 were selected for
the proceedings. Each paper was sent to at least 3 members of the Program
Committee for comments. The revised versions of the accepted papers were not
checked for correctness of their scientific aspects and the authors bear the full
responsibility for the contents of their papers. Some authors will write final
versions of their papers for publication in refereed journals.

I am very grateful to the members of the Program Committee for their hard
work in the difficult task of selecting fewer than 1 in 3 of the submitted papers,
as well as the following external referees who helped the Program Committee:
Nuttapong Attrapadung, Roberto Maria Avanzi, Gildas Avoine, Joonsang Baek,
Qingjun Cai, Jae Choon Cha, Chien-Ning Chen, Liqun Chen, Xiaofeng Chen,
Koji Chida, Nicolas T. Courtois, Yang Cui, Jean-Frangois Dhem, Louis Goubin,
Louis Granboulan, Rob Granger, Jens Groth, Yumiko Hanaoka, Darrel Hanker-
son, Chao-Chih Hsu, Tetsutaro Kobayashi, Yuichi Komano, Hidenori Kuwakado,
Tanja Lange, Peter Leadbitter, Byoungcheon Lee, Chun-Ko Lee, Henry C.J. Lee,
John Malone Lee, Yong Li, Benoit Libert, Hsi-Chung Lin, Yi Lu, Jean Monnerat,
Anderson C.A. Nascimento, C. Andrew Neff, Akira Otsuka, Daniel Page, Kenny
Paterson, Kun Peng, David Pointcheval, Taiichi Saitoh, Junji Shikata, Igor Sh-
parlinksi, Martijn Stam, Ron Steinfeld, Koutarou Suzuki, Shigenori Uchiyama,
Frederik Vercauteren, Guilin Wang, Benne de Weger, Guohua Xiong, Go Ya-
mamoto, Shoko Yonezawa, Rui Zhang, and Huafei Zhu. (I apologize for any
possible omission.) The Program Committee appreciates their efforts.

Thanks to Patricia Loh for the secretarial work and to Ying Qiu for main-
taining the WWW page of the conference. Finally, I would like to thank everyone
who submitted to PKC 2004, and IACR for its sponsorship.

December 2003 Feng Bao
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A Generalized Wiener Attack on RSA

Johannes Blomer and Alexander May

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn
33102 Paderborn, Germany
{bloemer,alexx}Quni-paderborn.de

Abstract. We present an extension of Wiener’s attack on small RSA
secret decryption exponents [10]. Wiener showed that every RSA public
key tuple (N,e) with e € Zjy, that satisfies ed — 1 = 0 mod ¢(N) for
some d < %N i yields the factorization of N = pq. Our new method
finds p and ¢ in polynomial time for every (NV,e) satisfying ex + y =
0 mod ¢(N) with

x < %N% and |y| = O(N_%ex).

In other words, the generalization works for all secret keys d = —zy ™!,
where z, y are suitably small. We show that the number of these weak
keys is at least N 2 and that the number increases with decreasing
prime difference p — ¢q. As an application of our new attack, we present
the cryptanalysis of an RSA-type scheme presented by Yen, Kim, Lim
and Moon [11,12]. Our results point out again the warning for crypto-
designers to be careful when using the RSA key generation process with
special parameters.

Keywords: RSA, weak keys, Wiener attack, continued fractions

1 Introduction

Let N = pg be an RSA-modulus, where p and g are primes of equal bit-size (wlog
p > q). Let e be the public exponent and d be the secret exponent satisfying
ed =1 mod ¢(N), where ¢(N) is the Euler totient function. We denote by L ny
the multiplicative group of invertible integers modulo ¢(N). An RSA public key
is a tuple (N,e) € Z X Z} .

In order to study the security of RSA, many people focus on the difficulty
to factor the modulus N without taking into account additional information
that may be encoded in the public exponent e. Hence, it is tempting for crypto-
designers to construct RSA-type schemes with special public exponents that
yield a good performance in encryption/decryption. For example, one might be
tempted to use small decryption exponents d in order to speed up the decryp-
tion process. Another fast RSA-variant that makes use of special RSA-keys was
proposed by Yen, Kim, Lim and Moon [11,12] in 2001. This YKLM-scheme is

F. Bao et al. (Eds.): PKC 2004, LNCS 2947, pp. 1-13, 2004.
© International Association for Cryptologic Research 2004



2 Johannes Blémer and Alexander May

designed to counteract the fault-based attack on CRT-RSA of Boneh, DeMillo
and Lipton [2].

In 1990, Wiener [10] observed that information encoded in the public ex-
ponent e might help to factor N. More precisely, he showed that every public
exponent e € Z;( N) that corresponds to a secret exponent d with d < %N 1 yields
the factorization of the modulus in time polynomial in log(NV). In 1999, Boneh
and Durfee [3] used Coppersmith’s method for finding small roots of modular
polynomial equations [4] to improve the bound to d < N9-292,

Although the YKLM-scheme uses a special key generation algorithm in order
to provide good performance, the secret keys d are not chosen to be small.
Therefore, the Wiener attack as well as the Boneh-Durfee attack cannot directly
be applied to this RSA-variant. However, in this work we present an extension
of Wiener’s approach that leeds to a much larger class of secret keys d which are
insecure. Furthermore, we show that the keys which are generated in the YKLM-
scheme belong to this larger class, for all reasonable parameter choices of the
scheme. As a result, we obtain that the public keys (N, e) in the YKLM-scheme
yield the factorization of N in polynomial time.

Let us put the cryptanalytic approaches above into a more general framework
by defining the notion of weak keys: The results so far show that there are classes
of public keys (NV, e) where every element in the class yields the factorization of
N. One may view the auxiliary input e as a hint how to factor N: Without
having e we assume that factoring N is hard, but with the help of e it becomes
feasible. In the case of the Wiener attack the class consists of all public key
tuples (NN, e) where ed — 1 = 0 mod ¢(N) with d < 3 N3.

We call such a class weak and the elements (N, e) of the weak class are called
weak keys. To be more precisely: We define the size of a class of public key tuples
by the number of elements (N, e) in the class for every fixed N. Let C be a class
of public key tuples (V,e), then

sizec(N) = |{e € Zy(ny | (N,e) € C}|.
C is called weak if

1. The size of C is polynomial in N, i.e. sizec(N) = 2(N7) for some v > 0.
2. There exists a probabilistic algorithm A that on every input (N,e) € C
outputs the factorization of NV in time polynomial in log(N).

Note that the size of a weak class is a function in N which denotes the number of
elements that can be factored by the corresponding algorithm A. For example,
the size of the class in the Wiener attack is at least Ni—¢. Here the e-term
comes from the fact that only those d with ged(d, (N)) = 1 define legitimate
RSA-keys.

Let us give another (trivial) example of a weak class of public keys. Every
tuple (N,e) with e = kg, 1 < k < p is a weak key, since the computation
ged(N,e) = q yields the factorization. These are p > N2 many weak keys.
Howgrave-Graham [6] observed that even the knowledge of e = kq + r for some
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unknown r < N1 suffices to find the factorization of N. This implies the exis-
tence of a weak class with size N%.

We think that it is a very natural question to study how many of the possible
choices of the public keys are indeed weak keys that should not be used in the
design of crypto-systems. For the Wiener attack and the Boneh-Durfee attack
it is easy for a crypto-designer to see that a key is weak by inspecting the most
significant bits of d. For the extension of Wiener’s attack that we describe in
this paper the weakness of the keys is not obvious. One can understand our new
result as a warning for crypto-designers to be careful when using keys with a
special structure.

There is also an imminent danger from weak keys in the case of untrusted
servers that create public/secret key pairs: Crépeau and Slakmon [5] showed
how to use weak keys in order to construct malicious RSA systems by encoding
information into the public exponent e. Our new class of weak keys is well-suited
for the use in such systems and leads to a large variety of new malicious keys.

In order to describe our new attack, let us first consider the normal RSA-
case, where p — ¢ = 2(v/N). Note that for randomly chosen primes of the same
bitsize, the probability that p, ¢ agree in the ¢ most significant bits is roughly
2-(c=1)_ Hence, we have p — g = £2(v/N) with overwhelming probability.

For the case p — g = £2(v/N), we introduce a variant of Wiener’s attack that
works for all public keys (N, e) where ex +y = k¢(N), k € N with

0<z§§N% and |y|:(9(N“%ex).

Notice that our bounds exclude trivial solutions where ez +y = 0, since |y| < ez.

The new method works as follows: As in Wiener’s approach, we use the
continued fraction algorithm to recover the unknown values = and k. Afterwards,
we show that a factorization method due to Coppersmith [4] can be applied:
Given half of the most significant bits of p, one can find the factorization of N.

Let us compare the new result to Wiener’s attack. Our weak keys have the
structure that e™! = d = —% mod @(NN), i.e. Wiener’s algorithm is the special

case where x = d and y = —1. One should observe that for z of size roughly N i
as in Wiener’s attack, the parameter e must be of size at least N in order to
satisfy a relation of the form ex + y = 0 mod ¢(V). Thus, |y| can be chosen of
size at least x. If e is roughly NV, which is normally the case for small d, |y| can
even be chosen of size Niz in the attack.

One should expect that for fixed N the number of public keys (N,e) for
which our approach applies is roughly the number of tuples (z,y) within the
given bounds. This number can be upper bounded by z- N iz < Ni.In fact, we
are able to show that the number of weak keys (NN, e) for which our algorithm
works is also lower bounded by 2(N3—¢).

It is important to notice that in contrast to the approaches of Wiener and
Boneh-Durfee, the secret keys in our attack are not small itself but have a “small
decomposition” in z and y. So they might look innocuous to crypto-designers
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and may be tempting to use in the design of cryto-systems with good encryp-
tion/decryption performance.

As an example, we show that the public keys (NV,e) constructed in the
YKLM-scheme can be attacked by our generalization of Wiener’s method. Name-
ly, we can express the secret exponent d in terms of small z and y, which breaks
the crypto-system for all reasonable parameter choices.

In 2002, de Weger [9] observed that Wiener’s attack can be improved when
the prime difference p — ¢ is significantly less than V/N. de Weger’s method also
applies to our extension of Wiener’s attack. Interestingly, we are able to show
that for prime difference p —q = Nit?r, 0 <y < 3 there are at least N1-7—¢
weak RSA-keys (N, e).

It is important to notice that for prime difference p—q = O(N %) an algorithm
of Fermat finds the factorization in polynomial time. Thus, our attack has a
nice interpolation property towards Fermat’s algorithm: As p — q decreases, the
number of weak public keys increases. For -y approaching zero almost all keys
are weak, corresponding to the fact that N can be easily factored without any
hint that is encoded in e.

As a by-product, we get a simple probabilistic factorization algorithm with
expected running time O(N77¢) comparable to Fermat-Factorization: For a fixed
N, choose random e < N and apply our algorithm to each choice (NN, e) until
(IV, e) is a weak key that yields the factorization.

Notice that the interpolation property above seems to imply that one cannot
improve our approach significantly. On the other hand, there might be different
techniques — for example lattice reduction techniques for higher dimensional
lattices — that lead to larger classes of weak keys for the prime difference p—q =
2(v/N). But at the moment this is an open question.

The paper is organized as follows: In Section 2, we present our extension of
Wiener’s attack. As an application of this method, we present the crytanalysis
of the YKLM-scheme in Section 3. In Section 4, we apply the methods of de
Weger to our generalized Wiener attack. We conclude the paper by showing in
Section 5 that the number of weak RSA-keys (NN, e) in our approach is 2(N3~¢).

2 The Generalized Wiener Attack

Throughout this work we consider RSA-moduli N = pq, where p and q are of
the same bit-size (wlog p > ¢). This implies the inequalities

p—g<N? and 2N? <p+q<3Ni.
Furthermore, we have ¢(N) =N +1— (p+q) > §.

Our attack makes use of a well-known result due to Coppersmith [4]:

Theorem 1 (Coppersmith) Let N = pq be an RSA-modulus, where p and
q are of the same bit-sife. Suppose we are given an approximation of p with
additive error at most Ni. Then N can be factored in time polynomial in log N.
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We are now able to state our main theorem. Here we consider the normal RSA-
case where p — ¢ = 2(v/N).

Theorem 2 Let ¢ < 1 and let (N,e) be an RSA public key tuple with N = pq
and p—q > cN%. Suppose that e € Z3 ny satisfies an equation ex +y = ko(N)
with 1

0<z< §N% and |y| < eN™iex.

Then N can be factored in polynomial time.

One should notice that the conditions of Theorem 2 imply that ex + y # 0,
thereby excluding trivial congruences: Since ¢ < 1, we see that |y| < ez. This in
turn implies £ > 0.

Roadmap for the proof of Theorem 2

— We show that the unknown parameters z, k can be found among the con-
vergents of the continued fraction expansion of .

— From z and k, we compute an approximation of p + q.

— From an approximation of p + g, we compute an approximation of p — q.

— Combining both approximations gives us an approximation of p, which leads
to the factorization of NV by using Coppersmith’s Theorem.

We want to argue that in the following proof we can assume wlog that
N > (%)% This condition is equivalent to ¢ > 8N —%. If this inequality does
not hold then p — ¢ = O(N#) and Fermat’s factorization algorithm yields the
factorization of N in polynomial time.

Proof: Let us start with the RSA key equation
ec+y=k(N—-—p—q+1). (1)
Dividing by Nz gives us
e _k_ _kptg-D+y

N =z Nz

We want to argue that we can assume wlog that ged(k, z) = 1. Notice that every
integer that divides both k£ and z must also divide y by equation (1). Thus, we can
divide equation (1) by ged(k, 2) which gives us an equation ez’ +y’ = 0 mod ¢(N)
with even smaller parameters 2’ and y’. Hence we can assume that % is a fraction
in its lowest terms.
By a well-known theorem (see e.g. Theorem 184 in [7]), the fraction % appears
k 1

among the convergents of % if the condition | — 2| < 577 is satisfied. Thus it

remains to show that |k(p + ¢ — 1) + y| < £L. Let us first find a bound for the
parameter k. We know that k = %—z(l—*\}% and |y| < eN~%ez. Since our precondition
N > (2)* implies N > 2'2, we conclude that |y| < lex. Therefore, we obtain

3 ex 5 ex
15 == 15y @

= |
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Now we are able to estimate

k(p+q~1)+y_145¢?$) .N% +¢N™ 4em<——:vN2+:cN4 <4.’L‘N2

where the last inequality holds for N > 212.
Therefore we have to satisfy the condition 4zN 2 1< X 5 N which is equivalent

toxz < %N 2. This condition holds by our upper bound z < %N i

Hence, the fraction ﬁ must be among the convergents of the continued frac-
tion expansion of £. Since there are only O(log N) many convergents, we can
apply the followmg process to each candidate for k¥ and z until our algorithm
succeeds.

We have to show that the correct k and z yield the factorization of N. Let
us write equation (1) as

er Y
1——= =.
N+ % p+q~!—]c

Since every parameter on the left hand side is now known to us, we can compute
an approximation of p+q up to some unknown error term ¥, that can be bounded
by [¥| < 3cN 1 using inequality (2).

Our goal is to find an approximation of p up to some error of size N in order
to apply Coppersmith’s theorem. Therefore, we transform our approximation of
p+ q into an approximation of p — ¢ using the relation

p—a=vp—-9%=V(p+q)?—-4N.

Let s be our approximation of p + q with additive error at most %CN 1. We will
show that t = v/s2 4N is an apprommatlon of p— g with an additive error that
can be bounded by 9N%. Thus, the term (s +t) is an approximation of p with
error at most

1 1
S+t)—p=5ls—p-q+t-p+q|

<s5ls (p+q)l+ [t—(p—q)|

INA
WIN N -

eN% 4+ gN% <6Ni

Define p = (s + t). Then one out of the six values § + (2k + 1)Ni, k =
-3,-2,-1,0,1,2 is an approximation of p up to an error of at most N iin
absolute value. We can apply Coppersmith’s algorithm to all these values. The
correct term will then lead to the factorization of N in polynomial time.

It remains to show that t = v/s2 — 4N is 1ndeed an approximation of p — ¢
up to some error term that can be bounded by 9N'i. Let us first show that ¢ is
well-defined, i.e. s2 — 4N > 0. Observe that s = p+q+ 3 ¥ satisfies

2_4N=(p—q)2+2Y A%
& 4N =(p-9?+2L(p+a) +(3) -
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Therefore, it suffices to show that |2%(p + ¢)| < (p — ¢)*. Using |¥| < %cN%,
we obtain [2¥(p + ¢)| < 8cN %. From our precondition N > (2)*, we see that
8 < ¢Ni. This immediately implies 8cN ? <N < (p— q)? as desired.

Since N > 2'2, we know that the error term £ for p + ¢ can be bounded in
absolute value by 3cN i< iN i< 1(p + q). This implies the inequality

5< 2+a) 3)

We observe that

t—(p—q)=Vs2—4N—(p—q) = (S_iijZ\)/(iJ(rp(li:)q))'

Using the inequalities (3), s — (p+¢q) < %cN % and p—q > cN? finally leads us
to the desired bound

4.Ni.2N3
t—(p—q)§3c(1:—;)—2§9N%.

Let us briefly summarize the whole factorization algorithm.

/ Algorithm Generalized Wiener Attack \

INPUT: (N, e), where N = pq and ez + y = 0 mod ¢(N) for some
unknown 0 < z < 1N and |y| < N~ Tez.

1. Compute the continued fraction expansion of £.
2. For every convergent f of the expansion:
(a) Compute s=N+1— t=+/s2—4N and p= (s +1).
(b) Apply Coppersmith’s algorithm to the candidates p + (2k + 1)V i
for k = —3,-2,...,2: If Coppersmith’s algorithm outputs the fac-
torization of N, then stop.

\OUTPUT: D, q /

Since every step in Algorithm Generalized Wiener-Attack can be done in polyno-
mial time and the number of convergents is bounded by O(log V), this concludes
the proof of Theorem 2.

3 Cryptanalysis of the YKLM-scheme

In 2001, Yen, Kim, Lim and Moon [11,12] presented an RSA-type scheme that
was designed to counteract the Bellcore-attack (see [2]). Unfortunately, they
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need a specialized RSA key generation process in order to make their scheme
efficient. Their public key e satisfies a relation with some small parameters that
will be described in this section. The efficiency of the YKLM-scheme relies on
the fact that these parameters are indeed much smaller than the modulus N. It
was raised as an open question by the authors if one can use random public keys
e as well in their scheme, thereby maintaining the same performance.

We show that the public keys constructed in the YKLM-scheme satisfy the
conditions of Theorem 2, i.e. for every public exponent e we have ex + y =
0 mod ¢(N) with small z and y.

Let us first reconsider the modified key generation algorithm in the YKLM-
scheme.

RSA Key Generation in the YKLM-scheme

Modulus : Choose randomly two primes p and q of the same bit-size and com-
pute the product N = pq.

Small parameters : Fix a bound B, where B < N. Choose randomly e, and
rin {1,..., B} such that gcd(e,, $(IN)) = 1. Compute d, = e; ! mod ¢(N).

Secret exponent : Compute d = d, + r. If ged(d, #(N)) # 1, choose different
parameters e, and r.

Public exponent : Compute e = d~! mod ¢(N).

Public parameters : Publish the tuple (N, e).

The authors pointed out that instead of the public key tuple (IV, ) one could
even publish the parameters e, and r as well, but the following observation shows
that the parameters e, and r immediately yield the factorization of N.

Consider the public key equation

ed —1 = 0mod ¢(N)

The secret key d has a decomposition into the unknown part d, and the known
parameter r
e(dr + 1) — 1 = 0 mod ¢(N).

Multiplication with e, removes the unknown parameter d,
e(l+err) — e, = 0 mod ¢(N).

Since every parameter on the left hand side is known, we can compute a multiple
k¢(N) of the Euler function

e(l1+er) —e, =k¢(N) for some k € N. (4)

Since e < ¢(N), we have that k& < (1 + e,r). Therefore, the bit-length of k is
polynomial in the bit-length of N. It is a well-known result that such a multiple
k#(N) yields the factorization of N in probabilistic polynomial time in the bit-
length of N (see for example [8]).

Certainly, there is no need to publish the small parameters e, and r in the
YKLM-scheme. On the other hand, we see that by equation (4) one can apply
Theorem 2 by setting © = 1+ e,r and y = —e,. This gives us the following
corollary from Theorem 2.



