SUFTWARE
DESIGN
AND
- DEVELOPMENT

IIIIIIIIIIIII

3 8562795

SOFTWARE DESIGN
AND DEVELOPMENT

;T

" E8562795

Philip Gilbert

California State University, Northridge

nﬂ® SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames, Sydney, Toronto

A Subsidiary of IBM

The SRA Computer Science Series

William A. Barrett and John D. Couch, Compiler Construction: Theory and Practice

Marilyn Bohl and Arline Walter, Introduction to PL/l Programming and PL/C

Mark Elson, Concepts of Programming Languages

Mark Elson, Data Structures

Peter Freeman, Software Systems Principles: A Survey

C. W. Gear, Introduction to Computer Science: Short Edition

Philip Gilbert, Software Design and Development

A. N. Habermann, Introduction to Operating System Design

Harry Katzan, Jr., Computer Systems Organization and Programming

Henry Ledgard and Michael Marcotty, The Programming Language
Landscape

James L. Parker and Marilyn Bohl, FORTRAN Programming and WATFIV

Stephen M. Pizer, Numerical Computing and Mathematical Analysis

Harold S. Stone, Discrete Mathematical Structures and Their Applications

Harold S. Stone, Introduction to Computer Architecture, Second Edition

Acquisition Editor Alan W. Lowe
Project Editor James C. Budd
Editor Betty Berenson
Production Bookman Productions
Compositor Lehmann Graphics
Illustrator Reese Thornton
Designer Judith Olson

Library of Congress Cataloging in Publication Data

Gilbert, Philip, 1933-
Software design and development.

(SRA computer science series)

Bibliography: p.

Includes index.

1. Electronic digital computers—Programming.
2. System design. 1. Title. II. Series.
QA76.6.G553 1983 001.64'25 82-16817
ISBN 0-574-21430-5

Copyright © Science Research Associates, Inc. 1983.
All rights reserved.

Printed in the United States of America.

109 87 6 5 43 2

SOFTWARE DESIGN

AND DEVELOPMENT

To Dara and Josh

Preface

AUDIENCE AND OBJECTIVES

This book presents methods for developing small- to medium-scale software
systems, with emphasis on the:

+ Necessity of understanding the problem

- Importance of planning and design

+ Integration of documentation into the development process

+ Use of techniques to improve the quality of designs and programs

The increasing use of microcomputers will soon result in the widespread
development of small- to medium-scale software systems. My intention is to
prescribe the development of such a system in a way that is understandable
to—and usable by—students whose previous experience in programming
may be limited to one or two programming courses. The presentation is
directed to the sophomore and junior undergraduate levels and presumes a
knowledge of a structured programming language. Example programs are
shown in PASCAL code or pseudocode and should be easily understandable
by students who know a structured programming language.

The book is suitable for a second course in computing, or it can be used at
a more advanced level. It covers the material of the undergraduate course in
software engineering recently proposed as part of a model undergraduate
electrical engineering curriculum by the Educational Activities Board of the
Institute of Electrical and Electronic Engineers (IEEE). Such a course is
also an appropriate elective for computer science students. At California
State University, Northridge, all computer science majors take a junior de-
sign course, for which this text was developed. Successive versions of this
text have been used in this class over the last five years.

Last but not least, the text is suitable for an Information Systems
Curriculum, in a course on Systems Analysis and Design. It brings together
many pertinent topics, including requirements analysis based on structured
systems analysis techniques, data dictionaries, process specifications using

xii PREFACE

decision tables, specification-based testing, and specification and evaluation
of desired system qualities—as well as quality assurance and other project
management techniques. Also presented are the data structure-based design
method of Jackson and Warnier, and Jackson’s technique for system design
via process simulation. This text covers almost all of the material in the IS8
Systems Design Process Course contained in the Information Systems
Curriculum Recommendations just made (Communications of the ACM,
November 1982) by the ACM Curriculum Committee on Information Sys-
tems. About half of the material in the IS5 Information Analysis Course in
that curriculum is also covered.

System development involves topics such as module organization, testing
strategies, and project management. On the other hand, the limited experi-
ence of expected readers has dictated careful discussions of program struc-
turing (using top-down design), implementation techniques, and testing
methods. The presentation is balanced between larger-scale system topics
and smaller-scale program topics.

Each phase is treated in a unified manner. Where several different
methods exist, the discussion shows the relation of each method to the
others and integrates them into a coherent whole. The concern is not to
survey or contrast different methods but instead to show how they may be
used in concert.

Concept and application are equally stressed. The techniques presented,
while strongly based in concept, work for real-life problems. Concepts are
clearly stated, and problems that sharpen understanding of the concepts are
included. Wherever possible, a procedure for applying the concepts is also
given—as a comprehensive sequence of steps, as a checklist, or as a project
outline. Problems in the appendixes serve as a focus for student projects
based on the project outlines.

A course in software design is not complete without the experience of
projects. To provide such experience, problems in design (Appendix D), in
evaluation (Appendix E), and in system formulation (Appendix C) are fur-
nished. Almost every chapter has a project outline and sets of problems, and
thus a project pertaining to each chapter can be applied to problems in the
appendixes. A

We emphasize design. For each phase of design, the underlying problems,
solution possibilities, and principles are discussed, and a comprehensive
approach (usually in the form of a sequence of steps or procedures) is given
to guide the application of the technique to real problems. Design projects
and problems are included.

The relation between design and evaluation/testing is also emphasized.
Critical evaluation of program specifications and of design solutions is
stressed. Testing is included in the project outlines of Chapters 2 and 3 to
help foster the student’s ability to evaluate designs objectively. Problems in
Appendix E deal with the evaluation and analysis of previously written
programs. :

USE AT ELEMENTARY AND ADVANCED LEVELS

The topics in this book have varying levels of difficulty. Most of the book
presents techniques for getting the job done right—the basic idea in design
and development. These topics vary from simple code evaluation (Section
8.4) and charting methods (Section 4.1) through structured programming
(Section 7.1) to more complex design topics. (A sequence of topics for
inexperienced students is suggested later in this preface.)

A second layer of topics is concerned with overview of software develop-
ment: documenting, ensuring that high quality is attained, guiding the system
evolution (via testing, development, and delivery strategies), and managing
the project. For advanced students, the materials on documentation, guid-
ance, management, and quality can be strongly emphasized, by the use of
extensive projects and papers. The problems in Appendix C are suitable for
this approach.

The combination of basic and advanced information may be suitable for
graduate students whose undergraduate work is in other disciplines. For these
students, a spiral approach might be used, in which the basic techniques are
discussed and then the development cycle is reconsidered from an advanced
viewpoint.

PLAN OF THE BOOK

Part One, “Introduction,” consisting of Chapter 1, gives an overview of the
software development process, motivates the study of design and stresses the
need for quality assurance and documentation in the development process. In
accordance with this view, almost every chapter in the rest of the book has a
section discussing appropriate documentation and one that presents tech-
niques for assuring quality.

The next three parts present software development steps, in the order that
would occur in development of a medium-scale system. Part Two, “Initial
Design Steps,” consists of Chapter 2, “Discovering the Problem,” and Chapter
3, “The Design Concept.” Chapter 2 discusses requirements analysis, program
specifications, and quality specificatios. Data flow diagrams (called require-
ments diagrams in Chapter 2) are presented to annotate a network of activities,
and to show the data flows between activities. The use of decision tables to
define or analyze an activity specification (equivalently, a program specifica-
tion) is shown. The student’s attention is directed to understanding user needs
and the possibilities for variations in the problem. The quality specification,
which precisely states desired characteristics of a software system, is intro-
duced. Methods of defining and measuring qualities are discussed.

PREFACE Xxiii

XiV PREFACE

Chapter 3 discusses the overall design approach. The use of data flow
techniques is shown for a simple problem and for a design problem involving
complex data transformations. Design using simulation models is discussed,
and a documenting technique that aids development is described. Evaluation
of the initial design with respect to the quality specification is also discussed.

Part Three considers system design and development. Chapter 4 introduces
organizations of modules. Since undergraduate students are usually not famil-
iar with the annotation of organizations of modules or the complexities and
possibilities of such systems, these points are systematically introduced. Sec-
tion 4.1 introduces the organization diagram to annotate organizations of
modules. Section 4.2 develops all possible organizations for a simple program
(thereby giving practice with organization diagrams), gives details of the more
complex organizations, and compares the organizations. Chapter 5 discusses
strategies for deriving program organization, for testing, and for implementa-
tion. A principle technique in Chapter 5 is the derivation of program organiza-
tion from a data flow diagram, by partitioning the diagram.

Part Four deals with module design and development. Chapter 6 presents
several techniques for module design. The necessity for analyzing problem
situations and algorithms is stressed, and hints about analysis are given. The
finite state model, data-structure-based design, and table-directed design
techniques are discussed. Then Chapter 7 discusses module implementation
using the top-down design technique of stepwise refinement.

Chapter 8 deals with problems of program construction. The features of
popular programming languages, points of programming style, and the use of
measurement or estimation techniques to achieve greater program execution
speed are some of the topics presented. Chapter 9 considers test methods. The
discussions of Section 9.2 parallel those of Section 2.3, and the example of
Section 9.2 clearly illustrates the concepts of Section 2.3.

Finally, Chapter 10, which comprises Part Five, is concerned with manage-
ment issues. The topics discussed are key points in managing software proj-
ects, organizing and scheduling techniques, resource estimation, peer re-
views, and constraints on software development.

SEQUENCE OF TOPICS

Chapters 2 through 9 carry the student through the production steps of a
medium-scale program system, with system design presented in Chapters 4
and 5. As is appropriate for a medium-scale system, large-scale problems such
as module organization and testing strategies are considered before small-
scale problems of module design and development.

The chapters have been written to allow easy variation of the sequence of
topics. Single-program or small-scale development can be treated first, and

medium-scale development can be treated later, by using Chapters 3, 6, and 7
in sequence. For example, the material in Section 6.1 relates back to discus-
sions in Chapter 3. Module design material in the rest of Chapter 6 can be
immediately treated or can be skipped initially and reconsidered later. Discus-
sions in Chapter 7 relate back to Section 6.1 and also to Chapter 3.

Section 2.3, program specifications, and Section 9.2, on specification-based
testing, are strongly related; the example test in Section 9.2 illustrates the
concepts and techniques, of Section 2.3. Accordingly, it may be desirable to
discuss Chapter 2 and then Section 9.2 before proceeding to Chapter 3, to
reinforce the notion of designing to specifications. Another possibility is to
begin with a partial treatment of Chapter 9, to immediately introduce the
notion of critical evaluation and test of designs, and then continue with Chap-
ter 2. For this variation, an introductory project might involve writing a pro-
gram for a simple problem (Problem 1 in Appendix D is a good choice) first,
then writing a test to evaluate the solutions of other students, and finally
cross-evaluating student solutions with student tests.

For students with very little programming experience, it may be useful to
begin the course with documentation and evaluation, applying the techniques
of Sections 4.1 and 8.4 to projects in Appendix E, in order to foster program-
ming familiarity and to introduce immediately useful evaluation and documen-
tation techniques. Structured programming and stepwise refinement (Sections
7.1 and 7.2) could then be presented, followed by simple applications of data
flow concepts (Section 3.2). The course presentation might end in discussion
of documentation and evaluation at a higher level.

ACKNOWLEDGMENTS

I am greatly indebted to the work of others. I have been much influenced by
the works of Dijkstra, Parnas, Yourdon, and Kernighan and Plauger, to men-
tion but a few. I am grateful to Robert Persig’s Zen and the Art of Motorcycle
Maintenance for suggesting the notion of quality and also ways to achieve it.

I would also like to thank the following for their help in reviewing the text:
William W. Agresti, the University of Michigan—Dearborn; Dr. Anna Mae
Walsh Burke, Director, Center for Science and Engineering, Nova University;
John D. Gannon, Univerity of Maryland; Dr. A. FE. Norcio, U.S. Naval
Academy; Gruia-Catalin Roman, Washington University in Saint Louis; and
David C. Rine, Computer Science Division, Western Illinois University.

It was Gary Hordemann who pushed me into working full-scale on this
book; Jack Alanen read through a draft and pointed out errors of fact, style,
and explication. Steven Stepanek and Elaine La Delfa examined and cor
rected all of the programs in the book (more precisely, all that I remembered to
show them). Wendie Diane Edie provided word processing for many drafts.

PREFACE XV

XVi PREFACE

Alan Lowe guided me through the publication process with great skill. And
my wife Hadassa continually encouraged me through it all.

I must thank the many past students in my program design classes at
California State University, Northridge. They suffered through the develop-
ment of this manuscript, unerringly finding the inadequacies of each version.

co
c.'-'\(
&
& el
-3
(s
W

Contents

Preface

Part One: Introduction

1. The Software Development Process

1.1 A Cautionary Tale

1.2 The Basic Development Cycle

1.3 The Right Attitude

1.4 Communication During Software Development
1.5 The Need for Quality

1.6 Preview of Attractions and Useful References

Part Two: Initial Design Steps

2. Discovering the Problem

2.1 Introduction to User Requirements and Program
Specifications

2.2 Requirements Diagrams

2.3 Program Specifications

2.4 Quality Specifications

3. The Design Concept

3.1 The Design Approach

3.2 Introduction to Data Flow

3.3 Design Using Data Flow Concepts
3.4 Design Using Simulation Models
3.5 Documenting the Design

3.6 Evaluating the Design

Xi

14
18
22
27

31

33

33
37
66
100

117

117
122
139
164
172
184

vii

vili CONTENTS

Part Three: System Design and Development

4. Introduction to Module Organization

4.1 Organization and Its Annotation
4.2 Variations in System Organization

5. Design and Development of Module Organization

5.1 Principles of Organization

5.2 Organizing via Top-Down Design

5.3 Organizing by Isolation of Design Factors

5.4 Development of Module Organization:
Strategies for Coding, Testing, and Delivery

Part Four: Module Development

6. Design of Modules

6.1 Algorithms for Critical Actions
6.2 Data-Structure-Based Design
6.3 The Finite State Machine

6.4 Table-Directed Processes

7. Module Implementation Using Top-Down Design

7.1 Components of Structured Programs
7.2 Stepwise Refinement: A Top-Down Design Strategy
7.3 Retrofitting Old Programs

8. Issues in Program Construction

8.1 Characteristics of Commonly Used
Programming Languages

197

199

199
219

247

247
255
270

289

303

305

305
318
356
382

403

403
416
442

451

451

8.2
8.3
8.4
8.5

Programming Style

Efficiency Considerations

Evaluation of Program Code

Program Maintenance Documentation

9. Verifying Program Correctness

9.1 Basic Issues
9.2 Test-Case Derivation in
Specification-Based Testing
9.3 Test-Case Derivation in
Program-Based Testing
9.4 Debugging: Finding and Repairing Errors
Part Five: Other Perspectives

10. Management Perspectives

10.1.
10.2
10.3
10.4
10.5

Introduction to Software Project Management
Organizing and Scheduling

Estimating Required Resources

Review Procedures

Constraints on Software Development

Appendix A Author Index
Appendix B: Bibliography
Appendix C: System Problems
Appendix D: Design Problems
Appendix E: Evaluation Problems

Index

466
481
488
501

507

507

518

536
545

553

555

555
565
579
602
613

619
621
635
641
661

677

CONTENTS

ix

Part One
INTRODUCTION

A cautionary tale about myth and reality . . . the basic
development cycle . . . the right attitude . . . communica-
tion and documentation . . . the need for quality

chapter one

The Software
Development Process

1.1 A CAUTIONARY TALE

The phone rang. Before I knew it, the voice on the other end was
reeling out a tale of woe. The software never worked properly, he
said, and they’d been patching it for over a year. “We really need
the system; what can we do? We’re desperate for help!”

“Hmm,” I said, deciding against the tweed jacket because it was
a warm night, “I can be over there in 20 minutes. Of course, you
know my fee—payable in advance.’

“We’ve got it in cash.”

“Twenty minutes, then.” On with the silk instead. I picked up my
personal computer and was out the door.

It would be a tricky one, but I knew I could pull it off. . . .

Perhaps the next pulp novel superhero will be the dashing computer consul-
tant armed with trusty personal computer, who rushes off into the night and
saves the faltering software system. Because coding is the most visible activity
in software development, and because programmers do rush about fixing the
errors in their programs, it is easy to fall prey to the myth of the superpro-
grammer who can instantly fix all of the problems of an ailing program. Unfor-
tunately, the real story almost always has a different last line.

I didn’t tell him that it was already too late. . . .

It would be wonderful if the original story was usually true. About two-
thirds of the overall cost of software is spent in software maintenance [Boe
79b], and the situation of the story—that errors continue to be found after the
software development has supposedly been finished—is a sad but common
one. Obviously, program maintenance is by far the most costly software ac-
tivity. Successful maintenance is greatly desired, but all the important deci-
sions that affect maintenance have been made long before maintenance begins
[War 78].

Two important factors that could cause our hero’s efforts to fail are program
scale and complexity. Large scale, in and of itself, changes the nature of a

