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Preface

-Under the generic title “Chemical Reaction Analysis” this book deals with
chemical kinetic processes and physical rate processes, and the manner in
which these processes interact to govern the apparent overall behavior of
chemically reactive systems. Although systems of this type are evident in
many branches of science and engineering, the study and development of the-
field has remained largely within the sphere of chemical engineering; as a
result, emphasis has been placed on serving.the needs of the chemical
industry. To an extent, such emphasis is justified. On the other hand, we
cannot overlook the importance of many systems which lie outside the
usual realm of chemical engineering, such as those supplying nutrients to the
living cell or igniting solid propellants, all of which can be analyzed from a
common set of principles. Accordingly, it seemed appropriate to shape this
book to serve the needs of those interested in chemically reactive systems
in general: to emphasize the chemical reaction itself and show how the
behavior of the reaction system is modified when resistance to energy and
material transport is large. By following this more general approach, I
hope to have made the book valuable to a greater audience, who can adapt the
principles and methods to fit specific cases rather than depend upon recipes.

Manifestly, this small book cannot cover all the topics which are concerned
with heterogeneous chemical reactions and transport processes. The subject
is too broad for this. However, the problem of what to select was quite
naturally resolved for me: I could best deal with those topics which reflected
my own interest and experience. Perhaps no one will completely agree with
my selection of subject material; but I do not view this with any great alarm,
because the subject matter is reasonably diverse and is developed from a
unified point of view, thereby giving a perspective from which the vast
and rich literature in this field can be evaluated. In fact, if the book stimulates
the reader to probe deeper into this fascinating area, it will have served its
purpose. '

Certain prerequisite knowledge is assumed as part of the reader’s back-
ground. He should have some familiarity with kinetics, and in particular
with catalysis, because the treatment of the latter topic in this book is
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viii Preface

probably insufficient for the application of these methods to a specific
problem. He must have had some experience with the theory of transport
processes, and should have a working knowledge of ordinary differential
equations. To understand the treatment of complex reactions, familiarity
with vector and matrix operators is needed. The discussions in the two
appendices should be sufficient for this purpose; however, to work confidently
with these methods the suggested references should be consulted.

Many people have encouraged me and helped me in the writing of this
book and to these people, many of whom must remain anonymous, I am
indebted. I take pleasure in acknowledging the helpful comments of my
colleagues Professors R. Aris, J. M. Prausnitz and T. Vermeulen on various
parts of the book. I am sincerely grateful to two other colleagues, Professors
A. Acrivos and M. Boudart, for helping me to shape ideas during the course
of this project and for their comments on the finished manuscript. Their
influence is evident in many parts of this book. I owe a great debt to Dr. J. C.
Friedly who patiently and critically read the original manuscript. His
comments and suggestions for improvement are too numerous to list in
detail. To Mrs. Edith Taylor and Mrs. Jerilyn Schricker, who contributed far
more to the final form of the manuscript than typing, I express my sincere
thanks. Finally, this book would not have been possible without the efforts
of my wife, Kay, who saw to it that large blocks of uninterrupted time were
available to me for meditation.

E. E. PETERSEN
Berkeley, California
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Introduction I

"The first aphorism of Sir Francis Bacon’s Novum Organum, “Man, who
is the servant and interpreter of nature, can act and understand no further than
he has observed, either in operation or in contemplation, of the method and
order of nature” [emphasis added], is almost a prophetic warning of special
significance to the kineticist. He depends upon experimental measurements
perhaps even more than does his counterpart in other areas of chemistry
and chemical engineering. The rate of a chemical reaction must be measured
experimentally. And yet, curiously, without theoretical interpretation, a set
of measurements is often virtually useless. The bridge between theory and
experiment is chemical reaction analysis: a subject concerned with the
interaction of chemical kinetic and physical rate phenomena and having for
its objective the resolution and evaluation of the importance of each of the
individual processes in the over-all rate process.

Very few real systems involving chemical reactions can be analyzed, even
in principle, with rigor, whereas certain systems, some of which have little
practical importance, can be analyzed in a sophisticated fashion. While at
first it may seem strange to be concerned with systems of little practical
value, the real purpose of analysis is to find out which features of a reaction
system are important. Can we neglect certain features which greatly compli-
cate the analysis of the system and obtain a meaningful result? Unfortunately
no unique answer can be given to this question because the importance of a
particular effect often depends upon how the information is to be used as
well as upon what property is being assessed. Intuition is often unreliable in
making this decision. Thus, the systematic survey of the influence of certain
coupled processes in modifying the over-all rate of chemical reactions



2 Introduction

combined with the development of techniques for analyzing such systems
become the avowed objectives of chemical reaction analysis.

The task of the chemical reaction analyst may be rather idealistically
divided into two phases: to measure and evaluate the chemical kinetic
behavior of the particular system of interest, and to use this information
to design equipment in which this reaction can be carried out economically
on a commercial scale. Without minimizing the importance and difficulty
of the latter phase, the former is by far the more difficult and important.
Moreover, the first phase should be completed before the latter phase begins.
It is for this reason that this book deals almost exclusively with the evaluation
of chemical kinetic behavior.

Difficulties arise, however, when we endeavor to deal exclusively with
chemical kinetics. A given chemical reaction will often occur only over a
rather narrow range of conditions, and everywhere within this range other
processes, such as transport of mass and energy, may influence the over-all
rate. In these cases we are forced to analyze all of the processes simuita-
neously if we are to learn about the kinetics. Finally, chemical reaction rates
are measured in reactors, and accordingly we shall find it necessary to analyze
the characteristics of the particular reactor in which the rates are measured
in order to obtain the desired information. Thus it follows that the principles
necessary to carry out the first phase include those basic to reactor design.

In this book we shall progress systematically from simple to complex
systems. First, we discuss chemical reactions as isolated processes: the
determination of a chemical reaction rate from experiments, and the relation-
ship between the functional form of the heterogeneous rate expression and
reaction mechanisms. We progress to systems wherein transport phenomena
modify the true kinetic behavior. In these sections, we seek criteria whereby
the importance of physical phenomena can be assessed from experimental
measurements. Later chapters emphasize the analysis of reactors.

Nowhere in this book will there be found a master key for the analysis
of chemically reactive systems. Each system has peculiarities of its own.
However, with a knowledge of the characteristic behavior of processes which
mask the kinetic behavior, it should be possible to plan an experimental
program to study the basic process—the kinetics—efficiently. Experience
gained by analyzing the behavior of elementary systems is valuable in develop-
ing a perspective from which the important processes governing the behavior
of complex systems are more quickly identified and isolated.



The Rate Expression 2

2.1 Rate of chemical reaction

Chemical reactions are interactions among molecules to alter the molecu-
lar species present. A chemical transformation results in a rearrangement of
the atoms in a part of the original species present (reactants) to form other
species (products) in such a way as to conserve atoms. The extent to which a
particular chemical reaction has accurred is then associated with the number
of the original molecular species which have been transformed into specified
product molecules.

Chemical reactions may take place in a single phase, or in several phases
or at phase interfaces, giving rise to their classification as either homogeneous
or heterogeneous. In this chapter, we shall be interested in rate laws for
both kinds of kinetics. The most useful quantitative description of a chemical
rate process relates the specific reaction rate to the relevant intensive properties
of the system. In the case of a homogeneous reaction, the specific reaction
rate is a measure of the number of molecules undergoing a particular chemical
transformation per unit time per unit volume. The heterogeneous reaction
rate is similarly defined except that it is based upon a unit area rather than a
unit volume. The desirable form of a specific reaction rate is therefore an

3



4 The Rate Expression §2.1

intensive property of a system and care must be exercised in its mathematical
formulation to preserve this property. Although the discussion immediately
following applies in the strictest sense only to homogeneous reactions, we
shall later recognize its applicability to heterogeneous systems.

2.2 Simple reactions

In much of the early experimental work in chemical kinetics, investigators
were concerned with closed, constant volume, homogeneous, isothermal,
batch systems. In such a system consider the general simple reaction below:

n

>aAd, =0, 22-1)

i=1
where a; < 0 and a, > 0 are, respectively, the stoichiometric coefficients of
reactants and products. The number of molecules of the ith species which
react per unit time per unit volume will not in general be equal to the number
of molecules of the jth species. However, these rates will be related by a
simple ratio of the stoichiometric coefficients. The conservation equation for
this system becomes

l_d_.g_l_d.gi_g_g* (2.2_2)

the specific rate of reaction, where C; and C; are the concentrations of 4
and A,, respectively. Note that the form of Eq. 2.2-2 defines a reaction rate
which is the same for all n species in the system. This, of course, is a direct
consequence of the fundamental meaning of the stoichiometric equatlon

The contention, that the specific rate of the reaction & is uniquely
determined by a set of intensive properties of the system is supported by an
overwhelming preponderance of experimental evidence as well as by complete
consistency with Xinetic theory. We shall consider the function % to be of
the form

g = .@(T, CAI’ C-Aﬁ’ CAS’ « ey CAn)’ (2.2'3)
ie.,
*2_H_ 3 (2.2-4)
a; a;

A chemical reactor designed to carry out the reaction of Eq. 2.2-1 on an
industrial scale may nbt meet the restrictions imposed upon the system used
to obtain the rate law Z from Egs. 2.2-2 and 2.2-3; however, whether it does
or does not is irrelevant, because the function Z is an intensive property of
the particular system and can be used along with the appropriate equations

* The bar notation refers to reaction rate per uait volume or the rate in a reference
volume. The absence of a bar refers to a heterogeneous rate expression.,



§2.2  Simple Reactions 5

for the conservation of species i and energy to obtain in principle the correct
design. The danger in the restricted definition as given in Eq. 2.2-2 is, there-
fore, that an incorrect formulation of the function & will result if the experi-
mental reactor does not meet the restrictions implicit in the equation used to
interpret the experimental results.

In an effort to obtain a more general equation for determining #, consider
a closed, homogeneous, isothermal, batch system, but not constant volume.
Figure 2.2-1(a) shows a cylindrical batch reactor of unit cross-sectional

L::::&:iw, s o
av Ulz) \j Ulz+A2)
_V(f) Ro
r €z Clz+A2)
¢|7 b4 JIrAz

(a) (b)

Fig. 2.2-1. Schematic diagrams of batch and piston flow reactors.

area fitted with a piston so that the volume of the reactor can be varied
arbitrarily during the course of reaction by, say, varying the pressure on the
external side of the piston. Suppose that there are N(f) molecules of certain
reactant species present at a time ¢, and at some later time, ¢t + At¢, there are
N(t + Ar) molecules of the same species. Then during the time interval At,
N(r) — N(t 4+ Ar) molecules have reacted. Now the conservation equation
must be modified because the specific rate Z is concerned with the number of
molecules undergoing reaction per unit volume per unit time. Under the
given set of conditions the value of # is given by Eq. 2.2-5:

1 N(t+ A) — N(@) _1 dN(®

LAitrE(i)t l?/?ti At ; - V(i dt

Equation 2.2-6 extends this definition to give a rate expression which is the
same for all species. This equation is more general than Eq. 2.2-2 and may
be used together with Eq. 2.2-1 to predict the rate of reactions in most batch
reactors and from which # can be obtained from experimental data.

(2.2-5)

L AN _ 1 dNJD)

V(Da, di V(Da, dt
There seems to be considerable confusion in the literature on the formula-
tion and use of the rate law. The difficulty appears to stem from a conflict

- .@(71, CA;’ CAg’ e ey CAn) (2.2‘6)



6 The Rate Expression  §2.2

in the intended use of kinetic equations. At the risk of being repetitious,
attention should again be called to several points which follow directly from
the discussion in the introduction to this chapter. The rate function & is a
well-defined intensive property of the system. To determine values of %, it
is necessary to measure how many molecules of a species (for simple reactions
of the type in Eq. 2.2-1) react per unit time in a unit volume. Under the
conditions of the first system discussed (constant volume), the number of
molecules reacted is directly proportional to the concentration and Eq. 2.2-2
correctly describes the system. In the second system, the concentration of a
species may vary for two reasons; reaction of the species and a volume
change. We must, therefore, account for volume changes in the conservation
equation in such a way that only the reacted molecules of the species are
measured and equated to &. To determine the nature of the & function, it
is necessary to compute the corresponding concentrations of all species and
temperature for each value of Z. Since the determination of the rate function
is the objective of most kinetic studies, the equation used to interpret kinetic
data should be formulated to apply to the particular apparatus used.

As a final illustration consider the open, isothermal flow system shown in
Fig. 2.2-1(b). If U = U(z) is uniform across a given cross section at z, then
the equipment is generally referred to as a piston or plug-flow reactor. Under
steady-state conditions, conversion is a function of position z, rather than
time. Then

L givuey=Ldivuc) = &, 2.2-7)
a; a;
where —div (UC) is equal to the net accumulation per unit volume per unit

time in the differential volume owing to the flow flux, UC,.* For this one-
dimensional system Eq. 2.2-7 becomes

1dUC) _ 1dUC) _ 4
a; dz a; dz ’

(2.2-8)

Note that Az/U is a measure of residence time in the differential volume.

Equation (2.2-8) is not a particularly useful expression when the number
of moles in a reference mass of feed changes with chemical reaction. This
latter condition can be expressed mathematically as

S a,#0. 229
=1

When the number of moles changes during the course of reaction, the
velocity becomes a function of z, the distance along the reactor. For such
systems, an alternate expression will be adopted at this time and used

* Readers not familiar with vector notation should refer to the brief discussion in
Appendix L.



§2.2  Simple Reactions 7

throughout the remainder of the book. Take as a basis a mass of feed equal
numerically to the average molecular weight of the feed stream, M. The
concentration variable Y; is then defined as the number of moles of the ith
species in a mass of reactmg mixture numerically equal to M. Thus, Y,
the concentration of i in the initial feed mixture, corresponds to the mole
fraction of i therein. Substituting into Eq. 2.2-7,

= G givy, (2.2-10)

aM

Lgivwe) = Laiv {Pll_] —AZQ}
a; a; Pr

where p;, = the density at any point within the flow reactor,
Gy = prU = the mass velocity—a constant throughout the plug-flow
reactor.
Eq. 2.2-8 becomes

Go dY: _ 5 (2.2-11)
aM dz

which may be used to obtain & in an isothermal flow reactor in which the

number of moles of reactants in the stoichiometric equation differs from the

number of moles of products.

Looking back through this section, we note that in Egs. 2.2-2, 2.2-6, and
2.2-11 the specific rate function # has been set equal to three different
expressions. Throughout the remainder of this book, many more expressions
will appear which contain this function. To argue that any one of these is
more correct than all of the others as its defining equation is to confuse a
conservation equation with a definition. The function # is a source term
in a conservation equation and the remaining terms in the above equations
vary with the type of system in question. In this respect, it is instructive to
note that every design equation in this book in which & appears may be
viewed as a possible means of determining it, but none of them is its defining
equation.

We sce that the Z function is independent of the system in which it was
obtained. Its functional dependence upon the relevant intensive properties
of the system will be most reliably determined in simple systems wherein
the kinetic phenomena are emphasized and transport phenomena minimized.
Conversely, it is usually unreliable to infer the kinetics from the over-all
performance of equipment encumbered by complex transport mechanisms.
Thus the design engineer is faced generally with two problems: finding the
Z function from an experimental apparatus making use of valid conserva-
tion equations for that system, and its subsequent combination with the
relevant equations of motion and conservation for a particular reactor to
predict the latter’s performance.
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2.3 Complex reactions

Reactions of industrial importance are frequently not simple and cannot,
therefore, be represented by a single stoichiometric equation of the form
shown in Eq. 2.2-1. The departure from the simple system may arise for a
variety of reasons. As examples, the formation of a given set of products
may occur by more than one reaction path, or a given set of reactants may
80 to several sets of products, or a reaction may take place between the
reactants and the intermediate products to form additional products. The
analysis of such systems may be undertaken by writing a set of stoichiometric
equations each of which corresponds to a reaction which is known to occur
in the system. Let us assume that the number of such equations corresponds
to m. A careful survey of these equations may show that they are not all
linearly independent, i.e., it may be possible to obtain one of the stoichiometric
equations by adding or subtracting two or more of the other members of
the set. Should this be the case, then it is possible to reduce the m equations
to, say, k equations which are now linearly independent. The system can be
represented completely by the set of k equations.

A simple example which illustrates this point is the reaction of graphite
with oxygen. Three reactions may be presumed to take place:

C+40,=CO (1)
C + 0, = CO, @ |} @31
CO + 3 0, = CO, 3

In this case m = 3. By inspection, we can see that these three equations are
not linearly independent because adding (1) and (3) of Eq. 2.3-1 gives (2).
Thus, we say one of the equations is linearly dependent and k = 2. The
choice as to which two equations are retained is arbitrary from the standpoint
of stoichiometry, although all may be valid paths mechanistically.

If the original set of m equations included all of the reactions which take
place to an appreciable extent, it then follows that it is necessary to know
the rates of appearance or disappearance with respect to k components in
order to determine the rate at which each reagtion of the original scheme
has occurred at a particular point. The analysis of the system has been
reduced to the problem of solving k simultaneous equations in k¥ unknowns.
Obviously, 1if the system is small (k is small), there is no compelling reason
to develop a formal system of analysis and the familiar algebraic methods
for handling such equaticns are adequate. However, a formal method of
analysis offers some computational advantages when k is large for two
reasons: it minimizes the opportunity for computational errors, and it makes
use of standard programs available for large digital computers.



§23  Complex Reactions 9
Consider the general set of stoichiometric reactions
n
>auAi=0 (G=123...m), (2.3-2)
i=1

which is a shorthand representation of the following set of equations:

apd; + andy +ayds + ...+ and, =0

AyoAy + QupAs + . ... ... + a,A4,=0

12471 22/%2 2 (2.3_3)
agA; + agA; + . ..o + ayAd, =
almAl + azmAz + ......... + anmAn == 0

where values of a,; are the stoichiometric coefficients and where a;, <0
refer to reactants and a,; > 0 refer to products. As before, assume that the
first k of these m equations are linearly independent, where of course m > k.
Another way of saying this1is that we form an n by m matrix of the stoichio-
metric coefficients and determine the rank of the largest nonsingular matrix*
which for the above case will be k.

What we generally seek in the analysis is to determine the rate at which
each of the k independent equations occurs under a prescribed set of condi-
tions and to compute the compositions of each of the components and the
temperature corresponding to these rates. Similar analyses are carried out
for a wide variety of conditions in order to establish the rate at which each
reaction occurs as a function of concentrations of the various species present,
the temperature, and other conditions such as catalyst activity, etc., in order
to establish the nature of the Z# function for each reaction. The hope is
that this information will lead to some kinetic model. It may be pertinent
to remark at this point that the mechanistic equations which describe the
kinetic path model, if indeed they are obtained, will almost certainly be
different from the set of k stoichiometric equations as written. In the absence
of a kinetic model, the # functions may be represented as an empirical
function of reaction conditions.

This objective cannot be realized without taking into account the type of
reactor in which the rate data are determined. By analogy with our earlier
discussion of simple reactions; compositions, temperature, and rates of
complex reactions are related by a system of conservation equations. Because
these latter equations contain terms corresponding to transport processes
which vary with the type of reactor, we cannot give a general analysis of
complex reaction systems. However, we shall develop a general relationship
among the rates of complex reactions which will serve as the basis for
analyzing all types of reactors. Then, as was done for simple reactions, the

* The largest nonsingular matrix of the n by m matrix of the stoichiometric coefficients
- is the k by k matrix of the set of independent reactions. See Appendix I1.
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analysis will be applied to differential and piston flow reactors as examples.
In later sections we shall make further use of the following section when
particular types of reactors are considered.

With the above objective in mind the formal analysis will be presented.
The analysis is concerned with the independent sub-set k of the m equations
shown in Eq. 2.3-2 which may be written as

Jas4,=0 (j=1,23,...,k), (2.3-4)
i=1

where k is the order of the largest nonsingular matrix of the original matrix
formed from the coefficients of the set of m reactions.

The rate at which the ith component is produced as a result of the jth
reaction is

Riy = Ri[Cy, Cy, Gy, ..., C, T (2.3-5)
These rates are related through the stoichiometric equations as shown below:
i=2"—’=9—?, (G=123,...,k. (2.3-6)

a; Qxs

Suppose now that we know the values of &, for each of the k reactions.
To find the production rates of ith species P, as a result of all the reactions
we would simply multiply the stoichiometric coefficient of the ith species in
each of the reactions times its corresponding rate and add these products.
The mathematical equivalent of this statement is

k
Pi=3Ya,®, @2.3-7)
P

However, we are generally faced with the problem in reverse, i.e., we are
given, or we must obtain experimentally, the production rates of the various
species and compute values of &; from the measurements. Since by supposi-
tion we have k independent equations, we need the independent determination
of the production rates of kX components of the mixture. Writing Eq. 2.3-7
in matrix* form to include the production rates of each of the kX components:

[P] = [#[au], (2.3-8)
where
[Pl=[PL P, P; ... P]
[g?lc] = [9_21 572 @3 A
ay; 4y a ce.oa
au a21 31 1 (2.3-9)
22
[2.] = 1
a3
Qi eveneennnns Qe

* Readers not familiar with matrix multiplication should refer to the brief discussion
in Appendix II.



