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Preface

This monograph studies a type theory and its applications to computer
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to be a simple and straightforward modification of my PhD thesis on the
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with in the original thesis, I have found them calling for more extensive
treatment and explanations, which have led me to more research in order
to obtain a better understanding. The result is a further development of
the type theory; many chapters are rewritten and several new chapters are
added. It is my hope that the basic ideas in the development of the type
theory are explained more clearly and its potential in applications is better
demonstrated.
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Healfdene Goguen, Per Martin-Lof, Gordon Plotkin, Don Sannella, Thomas
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1
Introduction

The study of type theory may offer an adequate computational and lo-
gical language for computer science. There are several compelling reasons
supporting such a claim of adequacy. First, type theory offers a coherent
treatment of two related but different fundamental notions in computer
science: computation and logical inference. This makes it possible for one
to program and to understand and reason about programs in a single form-
alism. Second, type theory can provide nice abstraction mechanisms which
support conceptually clear (e.g. modular and structured) development of
programs, specifications, and proofs. This makes it a promising candidate
for a uniform language for programming, specification, and reasoning in the
large as well as in the small. Finally, although type theory provides power-
ful and sophisticated tools, it is simple. Its simplicity is to be understood
in two aspects: one is that it allows a direct operational understanding of
the meanings of the constructions in its language, which gives a solid basis
of its use in applications; the other is that it is manageable in the sense
that there is a good way to implement it on the computer.

In this monograph, we develop a theory of dependent types, study its
properties, and illustrate its uses in computer science. Besides its contribu-
tion to the studies of type theory, logic and computer languages in general,
it is hoped that such an investigation will help to explain the theme and
points summarised in the last paragraph, make explicit the advantages
and possible limitations of using a type-theoretic language in pragmatic
applications, and, therefore, stimulate further development in this area.

In this introduction, after a brief explanation of some viewpoints and
motivations of studying type theory for computer science, the basic con-
cepts in type theory and their relationship with logical inference and pro-
gramming are explained intuitively, and a general inquiry into the under-
lying structures of various type theories is made to discuss several issues
in the study of type theory, leading to an explication of the ideas based on
which our type theory is developed. The type structure of the type theory
is briefly described, followed by an overview of this monograph.



2 Introduction

1.1 Motivations in computer science

Type theories have mainly been developed as foundational and logical lan-
guages by logicians who are interested in the foundation of mathematics.
Why is type theory useful for computer science? Here, rather than dis-
cussing the possible applications of type theories in computer science, we
briefly explain our particular motivations for studying and developing type
theory as a promising computational and logical language.

The study of languages in computer science, most of which are necessar-
ily formal in order to be implementable on the computer, is closely related
to that of formal systems, including type theories, which may provide valu-
able insights and useful ideas in understanding and designing computer
languages. In this respect, the study of logical systems is particularly im-
portant since logic plays an indispensable role in specifying and reasoning
about programs. Besides such a general contribution, type theory has sev-
eral features that are particularly interesting in computer science.

Computer languages have developed with their own distinguishing char-
acteristics, and computer scientists have rather different concerns as com-
pared with those in the traditional study of logical systems. For example,
the notion of computation or computational behaviour of programs is the
most basic and the most important in understanding a programming lan-
guage. That is why the operational semantics which directly characterises
the computational behaviour of programs has been essential for the pro-
grammer and prevailing in understanding and using a programming lan-
guage, although other semantics such as denotational semantics may also
help a great deal. Unlike the other logical or mathematical languages, type
theory is essentially a computational language (in particular, a functional
programming language) where computation is taken as the basic notion
and its operational semantics is simple and allows a clear understanding of
the language and its use. On the basis of that, type theory may be used
as a uniform language for programming, specification, and reasoning.

Another important aspect in the study of computer languages is that
computer scientists design and invent languages to be used in real ap-
plications to, for example, large software development. This leads to the
particular interests of computer scientists in studying such issues as mod-
ularisation and abstraction, which are among the central concerns in the
design of programming and specification languages. These concerns are
rather different as compared with those of meta-mathematicians in study-
ing formal systems for the foundation of mathematics where what seems to
prevail is the theoretical possibility of formalisation and foundational un-
derstanding of mathematics. In the research of programming methodology,
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which is closely related to but has different emphasis from software engin-
eering, computer scientists have been looking for theoretical foundations
on the basis of which a science of programming or program development
may be developed. The research on proof development systems or proof
engineering has attracted more and more interest in computer science now
that the need to verify various proof obligations in rigorous program de-
velopment has been recognised. In these researches, people are interested
not only in the fundamental understanding of the basic notions such as
computation and proof, but in the methodological issues such as modular-
ity which may lead to the design of good computer languages. Since types
are useful tools in organising concepts, a type-theoretic language with a
rich type structure can provide nice abstraction mechanisms for modular
development of programs, specifications, and proofs.

Simplicity of languages is another issue considered by computer scient-
ists as well as logicians. As logicians, computer scientists seek for simpli-
city for the fundamental understanding of the computer languages, but not
just that. Furthermore, computer scientists are interested in the quality
of software and the effectiveness of its production, where the simplicity of
the languages in use (e.g. a simple semantics that makes it easier to learn
and use a language) is important. Simplicity for a computer scientist also
includes the implementability of the language. As we have remarked, type
theory has a simple operational semantics, and it is a more manageable lan-
guage as compared with classical set theory since its good proof-theoretic
properties such as decidability provide a good basis for the computer im-
plementation.

Looking for simplicity, the work by a theoretical computer scientist is in
a certain sense ‘foundational’. For instance, to study computer languages,
he is usually working with a core language with essential constructions to
explain the issues and problems of interest, which may be further developed
into a full-scale language (e.g. with syntax sugar and other features) to be
used in practice. However, doing so, he has a wider concern about the use
of the language in practical applications since his study also involves the
methodological issues mentioned above. Type theory may offer a compu-
tational and logical language for computer science, which is foundational
in the above sense and adequate as claimed in the first paragraph of this
chapter.

1.2 Basic concepts in type theory

1.2.1 Objects and types

Computer scientists and mathematicians consider various constructions or
objects: computational objects like programs and specifications, and math-
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objects

Fig. 1.1. Understanding the judgement a : A.

ematical objects like proofs and theorems. The world of objects under con-
sideration may naturally be classified into types, to each of which some
objects belong while the others do not. For example, the natural numbers
constitute a type and the functions from type A to type B constitute the
type of functions from A to B. We can therefore think of two conceptual
universes, one of objects and the other of types (see Fig. 1.1). The rela-
tionship between (the representations of) objects and types is captured in
type theory by the judgements of the form

a:A

that asserts that object a is of type A. Among the objects of a type, some
are called canonical objects, which are the values of objects of the type
under computation. For example, a canonical natural number is either
zero or the successor of a (canonical) natural number. A canonical object
of the type of functions is in the form of a A-expression. In the presence of
a (defined) operation of addition, the natural number 1+1 is not canonical
and computes with 2 as its value. A canonical object cannot be further
computed and has itself as value.

The notion of computation is another basic concept in type theory,
which generates an equivalence relation, the computational equality between
the basic expressions in the language of type theory. For instance, applying
a function Az:A.b[z] to an object a of type A yields b[a]. It is an important
property of computation that every object has a unique value under com-
putation and the objects which are computationally equal have the same
value. As we shall see, this guarantees the harmony between the different
uses of the entities in the type theory.

The distinction between canonical objects from the others, together
with the above property of computation, is important in understanding
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the language of type theory.! It allows us to understand the meanings of
judgements, objects, and types in a direct and simple way (see Fig. 1.1).
In particular, an object a being of type A, as asserted by judgement a : A,
means that a computes into a canonical object of type A. That is to say,
a : A can be correctly asserted if the value of a is of type A. A type may
then be understood as consisting of its canonical objects, relative to the
understanding of computation. For instance, the type of natural numbers
is understood as consisting of the canonical natural numbers, while the
other natural numbers like 1 + 1 are understood as programs that produce
canonical natural numbers as their values.

On the basis of such a treatment of objects and types, a type theory
with a rich type structure is a typed functional programming language,
where programs are objects and functions (or functional programs) are
first-class citizens. The notions of computation and canonical object give a
basis for an operational semantics which allows a direct understanding of
the programs in the language.

1.2.2 Propositions as types

Types may be viewed as partial specifications of their objects (programs).
To describe and reason about the objects in type theory, one also needs
logical formulas or propositions and incorporates logical inference. The key
idea that makes this possible is that of propositions-as-types, discovered by
Curry [CF58] and Howard [How80].

The basic idea is that any proposition P corresponds to a type Prf(P),
the type of its proofs, and a proof of P corresponds to an object of type
Prf(P). Furthermore, one is able to assert a proposition to be true if and
only if one has a proof of the proposition, that is, an object of the type of
its proofs. The origin of this idea goes back to the intuitionistic philosophy
and, in particular, comes from Heyting and Kolmogorov’s intuitionistic
interpretation of logical operators (see [Hey71, Kol32]). For example, ac-
cording to Heyting’s interpretation, one has a proof of P > Q (P implies
Q) if and only if one has a construction which, whenever given a construc-
tion that proves P, yields a construction that proves Q. To cast such an
informal semantics into a formal setting, a construction that proves P O Q
may be represented as a function that maps the proofs of P to proofs of Q,
and the type of the proofs of P O @Q, Prf(P D @), may then be represented
by the type of functions from Prf(P) to Prf(Q).

Being considered in this way, the truth of a proposition is understood
by the inhabitance of the type of proofs of the proposition. The notion

!The notion of canonical ob, ject is a key idea in the verificationistic meaning theory
(cf., the forceful arguments by Dummett, Prawitz and Martin-Léf [Dum75, Dum91]
[Pra73, Pra74][ML84, ML85)).
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of canonical objects for type Prf(P) gives a notion of canonical or direct
proofs of proposition P, while the non-canonical objects of type Prf(P)
may be called indirect proofs. The understanding of propositions and their
proofs (and hence their truth and falsity) is then given, as we have discussed
briefly in the last section. To be explicit, an object being a proof of a
proposition P means that it computes into a canonical proof of P, and a
proposition is true if and only if there is a canonical proof of it.

The above type-theoretic conception of logical inference is also based
on the important idea, as emphasised by Martin-Lof, that there is a fun-
damental distinction between propositions, which are formulas describing
properties and facts, and judgements, which are assertions of whether for-
mulas are true. On the basis of this distinction, a type theory with sufficient
logical type structures has an internal logic and presents a logical language
rather different from that of set theory or that of logic programming. It is
not a logical theory in the traditional sense in that judgements and the no-
tion of computation are not sentences in some base logic such as first-order
logic, and many mathematical concepts such as the set of natural numbers
are introduced as types rather than axiomatic logical theories. However,
this does not mean that type theory is ‘logic-free’; its internal logic can
provide powerful tools to describe and reason about the entities in the type
theory.

1.2.3 Meaning and use

As explained above, the language of a type theory consists of objects and
types which are related by the assertive sentences called judgements of the
form a : A whose meaning can essentially be understood as that a computes
into a value (canonical object) of type A. Such a meaning explanation is
verificationistic since verification is taken as the central concept in the
operational meaning theory.

It should be made clear that taking verification as the central concept
in meaning explanations does not mean that to understand a judgement,
one only has to know when it can be correctly asserted, although that is an
important aspect of its use. Another equally important aspect of the use of
a judgement is about what consequences it has to accept that a judgement
is correct. An understanding of a judgement is not complete unless one has
grasped both of these two complementary aspects of its use.?

In type theory, as in other logical systems in natural deduction style, the
above two aspects of use are essentially reflected by the introduction rules

21t is still questionable whether it is possible to have a satisfactory theory of meaning
on the basis of which one can obtain or derive a complete understanding of the other
aspect of use from the understanding of the aspect chosen to be the central concept for
meaning. See [Dum91] for a very interesting explication.
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and the elimination and computation rules, respectively. For example, in
a language with dependent types, a type N of natural numbers may have
introduction rules informally described as follows:

1. 0is of type N.

2. If n is of type N, so is succ(n).

The introduction rules determine what the canonical natural numbers are,
and hence govern whether a judgement a : N can be correctly asserted. The
elimination and computation rules for N allows one to define functional
operations with domain type N by primitive recursion in the form

F(0)=c, F(n+1)=f(n,F(n)).
The elimination rule introduces a recursion operator Recy such that

e for any family of types C[z] indexed by natural numbers, any object
of type C[0], and any functional operation f that returns an object
f(m,c) of type C[succ(m)] for any objects m of type N and ¢ of
type C[m], Recn(c, f) is a functional operation which for any natural
number n returns an object of type C[n].

The meaning of the recursion operator is given by the computation rules:

1. Recn(c, f)(0) computes to c.
2. Recn(c, f)(succ(n)) computes to f(n, Recy(c, f)(n)).

Therefore, the elimination and computation rules determine what one can
do once a judgement n : N is correctly asserted, that is, how one may use
such a fact to assert other judgements such as Recy(c, f)(n) : C[n].

The understanding of objects and types can also be analysed into two
aspects and may be derived from the above explanation of the uses of
judgements. To understand a type, one must know what objects it may
have or how it may be inhabited, and how its objects may be used or how
its inhabitance implies that of other types. To understand an object, one
needs to know its type(s) and how it may be used to define other objects.
When a judgement is of the form p : Prf(P) asserting that p is a proof
of proposition P, the above analysis of use gives rise to an analysis of
the use of logical propositions and their proofs. The two aspects of use
concern mainly about when a logical proposition can be proved and what
the logical consequences are when a proposition is accepted to be true; these
two aspects are reflected by the introduction rules and the elimination rules
of the logical operators concerned, respectively.



