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PREFACE

This volume of LECTURE NOTES IN MATHEMATICS contains the proceedings of a
research Seminar-Workshop on recent progress in the Analytic Theory of Continued
Fractions held at Loen, Norway from June 5 to June 30, 1981. 1In recent years there
has been a renewed interest in the subject of continued fractions. This 1is due in
part to the advent of computers and the resulting importance of the algorithmic
character of continued fractions. It is also due to the close connection between
continued fractions and Pade approximants and their application to theoretical
physics. Primary emphasis at the Workshop was on the analytic aspects of the
subject; however, considerable attention was also given to applied and
computational problems. These interests are reflected in the Workshop proceedings.

The sessions at Loen were devoted not only to reports on recent work but also
to the development of new results and the formulation of further problems. The
authors whose papers appear in these proceedings either attended the Workshop or,
if unable to attend, had their work presented and discussed at Loen.

The Seminar-Workshop was organized by Haakon Waadeland of the University of
Trondheim and was made possible by grants from the Norwegian Research Council for
Science and the Humanities (NAVF) and from the University of Trondheim. Support
for travel expenses of the American participants came from the United States
National Science Foundation, the University of Colorado at Boulder, Colorado State
University, NAVF, and Fridt jof Nansen's and Affiliated Funds for the Advancement of
Science and the Humanities. The latter also supported a visit to the University of
Colorado for follow-up discussions of research topics. The University of Colorado
provided a small grant for expenses related to publication of the proceedings. We
gratefully acknowledge these contributions.

We also wish to thank the director and staff of the Alexandra Hotel in Loen
for providing excellent working facilities and a cordial atmosphere for the
Workshop. The professional assistance of the technical typists, Burt Rashbaum and
Alexandra Hunt, at the Mathematics Department of the University of Colorado is
greatly appreciated. Finally, we would like to thank Professor B. Eckmann, ETH
Zurich, for accepting this volume for the Springer series of LECTURE NOTES IN
MATHEMATICS.



LIST OF CONTRIBUTORS AND PARTICIPANTS

JOHN GILL
Department of Mathematics, University of Southern Colorado, Pueblo, Colorado 81001
U.S.A.

LISA JACOBSEN
Institutt for Matematikk, Universitetet i Trondheim, 7034 Trondheim-NTH, Norway

WILLIAM B. JONES
Department of Mathematics, Campus Box 426, University of Colorado, Boulder,
Colorado 80309 U.S.A.

L. J. LANGE
Department of Mathematics, University of Missouri, Columbia, Missouri 65201 U.S.A.

ARNE MAGNUS
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
U.S.A.

MARIUS OVERHOLT
Matematikk, Rogaland Distriktshogskole, 4000 Stavanger, Norway

ELAINE PULEO
Department of Mathematics, University of Southern Colorado, Pueblo, Colorado 81001
U.S.A.

WALTER M. REID
Department of Mathematics, University of Wisconsin-Eau Claire, Eau Claire,
Wisconsin 54701 U.S.A.

ALLAN STEINHARDT
Department of Electrical Engineering, University of Colorado, Boulder, Colorado
80309 U.S.A.

W. J. THRON
Department of Mathematics, Campus Box 426, University of Colorado, Boulder,
Colorado 80309 U.S.A.

HAAKON WAADELAND
Department of Mathematics and Statistics, University of Trondheim, N-7055 Dragvoll,

Norway



CONTENTS

Basic Definitions and Notation 1

Survey of Continued Fraction Methods of Solving Moment Problems
and Related Topics
William B. Jones and W. J. Thron 4

Modifications of Continued Fractions, a Survey

W. J. Thron and Haakon Waadeland 38

Convergence Acceleration for Continued Fractions K(an/l) with
lima =0
n

John Gill 67

Truncation Error Analysis for Continued Fractions K(an/l) , where
/'an' + “'an—ll <1
John Gill 71

A Method for Convergence Acceleration of Continued Fractions K(an/l)

Lisa Jacobsen 74

Some Periodic Sequences of Circular Convergence Regions

Lisa Jacobsen 87

Some Useful Formulas Involving Tails of Continued Fractions

Lisa Jacobsen and Haakon Waadeland 99

Uniform Twin-Convergence Regions for Continued Fractions K(an/l)

William B. Jones and Walter M. Reid 106

Digital Filters and Continued Fractions
William B. Jones and Allan Steinhardt 129

6-Fraction Expansions of Analytic Functions
L. J. Lange 152

On the Structure of the Two-Point Padé Table
Arne Magnus 176

A Class of Element and Value Regions for Continued Fractions

Marius Overholt 194

Parameterizations and Factorizations of Element Regions for
Continued Fractions K(an/l)
Walter M. Reid 206

On a Certain Transformation of Continued Fractions

W. J. Thron and Haakon Waadeland 225



BASIC DEFINITIONS AND NOTATION

To help unify the contributions to this volume we have asked all authors to
use the same notation for certain basic concepts. These concepts and their
definitions are listed here so as to avoid unnecessary duplication in the
introduction to various articles. The complex plane shall be denoted by € . For

the extended complex plane, that is €| J[®] , we use the notation & .

The continued fraction algorithm is a function K that associates with

a, #0 for n>1 and

ordered pairs of sequences <{an} ,{bn}> ,» with a <@

bl
bn € € for n >0, a third sequence {fn] with f_ ¢ € . A continued fraction

is an ordered pair
«fa }, bbb, £ b,
n n n

where the sequence {fn} is defined as follows. Let {sn} and {Sn] be

sequences of linear fractional transformations (l.f.t.) defined by

(DN1a) so(w) = bo +w, sn(w) = E__E_; g M= Ly 2 Fieee
n

and

(DNIb) So(w) = sy(w) , S (W) =S (s (W), n=1,2,3,...

Then

(DN1c) fn = Sn(O) , =0, 1, 2,... .

The numbers a and bn are called the n th partial numerator and n th

partial denominator, respectively, of the continued fraction <<{an} ’{bn}> .
(fn]> ; they are also called the elements. fn is called the n th approximant

of the continued fraction. If f = lim fn exists in & , we say that the
n+o

continued fraction is convergent and that its value is f . 1If the limit does not

exist we speak of a divergent continued fraction.

(m)}

More generally we shall also be interested in sequences of 1.f.t.'s (Sn

defined as follows:

s$Pw) =

|
)

(DN2)

T 2y Biyms sy

0, 1, 2,..."

|
w

° s

(m), 5 Ge® b
Sn (w) = 1 mt2 Sm+n(w) % 3

o

Here the symbol o denotes functional composition; that is, for functions g and
h, go° h(w) = g(h(w)) , provided that the domain of g contains the range of h

It can be seen that



s () = mtl

mt+2
m2 T
+ Zmin .
bm+n + w
One also obtains the following
(DN3) S(w) = m, 8O0 (w) = m woy, m wew s g (@) , n= Oy Iy Dyesay
n 0 n 0 1 n
so that
(DN&) £ =5 @=s 98220 ,n=01,2,... .
n n 0 n
Thus when bO = 0 (so that so(w) = w ), we have
s =5 Pw and £ =5 (0) =50 .

Since Sn(w) is the composition of non-singular 1l.f.t.'s, it is itself a

non-singular 1l.f.t. It is well known that Sn(w) can be written in the form

A +wA
S(w)y=-n__ ol -0, 1, 2,...
n B +wB
n n-1
where the An and Bn (called the n th numerator and n th denominator,
respectively, of the continued fraction) are defined by the second order linear

difference equations

(DN6a) A = 1, A0 = bo , B_1 =0, B, = 1,

An = bn An—l + a_ An—2 s = Ly 25 3jeeay
(DN6Db)

Bn = bn Bn—l + a Bn_2 ,n =1, 2, 3,... .

For simplicity a continued fraction <<{an} 5 {bn}> 5 {fn}> will be denoted by the

symbol
= a
(DN7) by + K ()
= b
n=1 n
or
a a a
(DN8) b0+_1 B
b1 + b2 + b3 +

The symbols (DN7) and (DN8) may be used to denote both the continued fraction and
its value when it is convergent.
The notation (DN8) shall also be used for finite combinations. Thus we write
S(m)(w) = w1 fm2 ... 2mtn , m>0 .
n + + £
bm+1 + bm+2 + bm+n w

We shall call the continued fraction



a

a a
m+l mt2 mt3 cee, (m0)
bm+1 w2 w3
the m th tail of (DN8) and we denote its n th approximant by fim) . Thus

M _gMigy  n=1,2, 3,000, m=0,1, 2,00 .
n n

If 1lim fgm) exists in & , then the m th tail is convergent and its value is

n>x
denoted by f(m) . One thus has, for m > 0 ,
(DN9) f(m)= aml 2m2 a3 ees
b + b + b +

mr+l mt+2 mt3
An important role is played in continued fraction theory by the expression hn

defined by

=]
h = —Sn (=) Bn/Bn

n gl |

It is easily shown, from the difference equations (DN6), that

a a,

(DN10) h, =1 and h_ =b + 10 =l eee 2 =23, 4. .
1 noon b 4+ b+ + b

n-1 n-2 1

In some cases the a bn are functions of a complex variable z . To

emphasize this dependence on 2z we sometimes write
a(2), b (), s™(z,w , A (), B (), £, {™(z), ete.

If in a continued fraction all bn =1 or all a = 1 , the notation outlined
above shall nevertheless be employed. If two or more continued fractions are

considered at the same time

* *(m) *(m) *x %
8, » Sn s E ,+++ might be used for K(an/bn) and

s ¥ f(m)'

’ S(m)'
n

' 1
n? for K(an/bn) .



SURVEY OF CONTINUED FRACTION METHODS
OF SOLVING MOMENT PROBLEMS

AND RELATED TOPICS
William B. Jones and W. J. Thron

1. Introduction. There is a constellation of interrelated topics:
Orthogonal polynomials;
Gauss quadrature;
Integral representation of continued fractions;
Determination of functions having given power series as asymptotic expansions;
Expansions of functions in series of orthogonal polynomials;
Solutions of certain three-term recurrence relations.

Today most of these topics are usually studied without reference to continued
fraction theory. Nevertheless, all of them either arose or received important
impetus from the theory of continued fractions. Thus Szego [20, p. 54] asserts
that: “"historically the orthogonal polynomials {pn(x)) originated in the theory
of continued fractions. This relationship is of great importance and is one of the
possible starting points of the treatment of orthogonal polynomials.”

Wynn in two statements [25, p. 190,191] attempts to delineate the role of
continued fractions even more sharply. His first statement is: "many theories
originating from the study of continued fractions have, upon reflection, been found
to have little to do with them.” He next asserts: "The theory of continued
fractions has been preeminently an avenue to new and unexpected results....” The
results to be described here provide a further confirmation of Wynn's thesis.

The interrelations in the constellation are intricate but, unfortunately,
confusing. This 1is in part due to the fact that many mathematicians have made
contributions using the tools, the language and the outlook of their trade, be it
continued fractions, orthogonal polynomials, functional analysis or others. Not
surprisingly they were, with few notable exceptions, somewhat narrow in their
knowledge of the literature and quite ignorant of the earlier history. We too
must plead guilty of such narrowness, although we are attempting to acquire a wider
point of view and to learn more about the beginnings of the various topics in the
constellation. However, at this writing our knowledge 1is still much more
fragmentary than we would like it to be.

Arising from an investigation of correspondence and convergence properties of
general T-fractions, we have been led to formulate strong Stieltjes and Hamburger
moment problems (SSMP and SHMP, respectively). We showed that certain sequences of

Laurent polynomials (L-polynomials), closely related to the denominators of the



approximants of the positive T-fractions, are orthogonal with respect to a
distribution function which can be derived from the positive T-fraction. In
addition we were able to obtain new results for other topics in the constellation.

To facilitate the description of our results we first make a series of
definitions.

A general T-fraction is a continued fraction of the form

P. 2z F, z F, 2z
(1.1a) 1 2 3 cee
1+ Gl zZ 41+ G2 z+ 1+ 03 z +

where Fn # 0 for all n . It can also be written in the following equivalent

forms:
(1.1b) lFl ) 1F3 Fa cee
z + Gl + 1+ GZZ + z + G3 + 1+ Ghz +
(1.1¢) z z z ces
ey + dlz + e, + dZZ + ey + d3z +

where e, # 0 for all n . Here

n-1 n
(1.2a) e, =1/F, , e, .= 010 F,/ 0 F, ., n=234,...,
1 1 20-1 T f2l | ) T2kel
n n
(1.2b) e, = 0 F,. _/ T F,. , n=1,2,3,...,
2n k=1 2k-1 k=1 2k
(1.2¢) d =Ge , n=1,273... .

If all Fn > J and Gn > 0, then (1.la) (and all forms equivalent to it) is

called a positive T-fraction. If dZn-l >0, e > 0 and e dn are real

for all n= 1, then (l.lc) (and all forms equivalent to it) is called a semi-

positive T-fraction.

For a function f(z) holomorphic at z = 0 , let us denote by Ao(f) its
Taylor series expansion at O . Let
-
k=0
be a formal power series, and let {Rn(z)} be a sequence of rational functions

holomorphic at z = 0 . Then we say that the sequence {Rn(z)) corresponds to the

series I akzk at z = 0 {f the formal power series AO(Rn) -z akzk has the
form
d k mn mn+1
AO(Rn) - z S * & +1% *oees
k=0 n n

where m >+ ® as n * @ , A continued fraction K(an(z)/bn(z)) is said to

correspond to a series if the sequence of approximants corresponds to the series.




Analogous definitions are used for correspondence at z = a and, in particular,
for a ==,

A general T-fraction (l.la) (at least if all Gn # 0) corresponds to formal
powers series LO at z =0 and L, at z == . It is convenient to write these
series as
k 2 -k

2 and L_ =

(1.3) L, = E = B

By @C(a,b) we shall mean the family of all real-valued, functions ¢(t)
defined on a < t < b , which are bounded, monotone non-decreasing with infinitely

many points of increase on (a,b) , and for which the integrals

b
n
(1.4) c, = fa (-t)" dg(t)

exist for all integers =n > 0 . (This additional condition is meaningful if

a = -» and/or b = += |, possibilities which we do admit.) The family of functions
¢ € @c(a,b) for which the ey in (1.4) also exist for all negative integers n
we shall denote by &(a,b) . The functions ¢ € @c(a,b) or &(a,b) are called
distribution functions and the c, defined by (l1.4) are called moments with

respect to the distribution ¢ .
The classical Stieltjes moment problem defined by Stieltjes in 1894 consists

in finding conditions on the moments {cn}; which would insure the existence of a
function ¢ € ®°(0,*) for which (1.4) holds, for all n = 0,1,2,..., with a =0 ,
b =« ., Stieltjes found necessary and sufficient conditions for the existence of
such a ¢ . He also found necessary and sufficient conditions for the ¢ to be
unique. In 1920 Hamburger extended the problem to the interval (-«,®) . This is

the classical Hamburger moment problem. In the solutions to the two problems

Hankel determinants Hém) =1,

n ol T Cmbk-1
(1.5) H.f(“‘) - | e vt """ S . ko=1,2,3,...
Cmrtk-1 St Cmt2K-2

as well as J-fractioms

k k k
(1.6) 1 2 3 cee

11 % 1z = 12 + zZ = 13 * Z =

are of importance.
We return now to the main theme of this article. General T-fractions (l.la)
with all Gn # 0 correspond to formal power series (1.3) at z =0 and z == .,

Thus associated with a general T-fraction (with Gn # 0) 1is a double sequence

(cn}tc of numbers and it makes sense to ask whether a function ¢ € &(0,=)



exists for which the <. with n =0, *1, *¥2,... are the moments with respect

to ¢ . This is the strong Stieltjes moment problem (SSMP). It was posed and

solved by Waadeland and the authors in [13] by means of positive T-fractions.

They also showed that a positive T-fraction has an integral representation of the
form

G(z) = [ zdd(t) |

0 z+ t

where ¢ € &(0,») , and that the function G(z) has the power series (1.3) (to
which the positive T-fraction corresponds) as asymptotic expansions at O and =« ,
respectively. In a later paper [12] the present authors identified and studied the
orthogonal functions associated with the SSMP. They turn out to be Laurent

polymonials (L-polynomials)

-n n
(1.7) apx + + a, x .

Let the n th denominator of the positive T-fraction in the form (1.lb) be
denoted by Vn(z); then the orthogonal L-polynomials are given by Qo(z) =1,

(1.8) Q1 (2) = (1™, (-2), @ (2) = (1), (-z), n =1,2,3,... .

To pose the strong Hamburger moment problem (SHMP) is the natural next step.

It 18 defined and solved, but without the use of continued fractions, by Njgstad
and the authors in [9]. Only a partial solution of the SHMP can be obtained using
continued fractions. This was also worked on jointly with Njgstad and is in

the process of being written. We present here an outline of the solution in terms
of semi-positive T-fractions, various ramifications such as integral
representations, and the question when does correspondence imply asymptoticity. In
addition, generalized approximants, which play a role in resolving the question of
uniqueness of the solution to the SHMP, are also discussed. The generalized
approximants arise from a "modification” (in the sense of [23] in these
Proceedings) of semi-positive T-fractions.

An overview of the contents of this article is as follows. In Section 2 we
give a summary of the historical background of the topics to be discussed here. In
Section 3, general T-fractions, their correspondence to power series at z = 0
and z =« , as well as the partial fraction decomposition of semi-positive T-
fractions are presented. In that section the generalized approximants are
introduced and convergence of semi-positive T-fractions are taken up.

In Section 4 the results of the preceding section are used to obtain integral
representations for all convergent subsequences of generalized approximants of
semi-positive T-fractions.

Section 5 is devoted to solutions of the SSMP and SHMP. 1In Section 6
L-polynomials, orthogonality, Favard's theorem on recurrence relations, and related

topics are considered. 1In particular, the identification of sequences of



orthogonal L-polynomials with the denominators of positive T-fractions will be
described.

Section 7 is concerned with Gaussian quadratures and convergence results that
can be obtained from them. In Section 8 the discussion shifts back to semi-
positive T-fractions. Here sufficient conditions for limit functions of
convergent subsequences of generalized approximants to have the series LO and

L, as asymptotic expansions will be derived.

2. Summary of early history. Even though Legendre discovered the sequence of

polynomials named after him in 1782, and was aware of the orthogonality property of
the sequence with even subscripts as early as 1785, it was really Gauss who got the
subject started.

In an article in 1812, Gauss studied hypergeometric functions and obtained,
among other results, a continued fraction expansion for ratios of hypergeometric
functions. In a second paper in 1814 he posed and solved a new quadrature problem
(earlier work had been done by Cotes and Newton among others), namely, to find an

approximation to an integral

+1
[ f(e)de
of the form
n
; n n
(2.1) DoA™ g™y,
k=1
where Kﬁn) and Tén) are to be determined in such a way that the approximation
is exact for all polynomials f(t) of degree not greater than 2n-1 . The proof
makes use of the continued fraction expansion

2 2
(2.2) M_dt jegztlya2 1/3 2/3:5 3/57 ...
-1 z+ ¢t z -1 zZ= Zz = z = Z =

which was known to Gauss from his work in 1812. Let Kn(z)/Ln(z) be the 2n th

approximant of (2.2). Then the roots of Ln(z) are all real and distinct and

K (z) 0 A
(239 n = —k
LD kel L 4 o0
k
where the Xin) and rin) are exactly the constants needed in (2.1). Thus the

Gaussian quadrature formula can be proved and the constants involved in it can be

obtained from continued fraction considerations. Gauss actually computed some of

the and

MW ana (D)
Gauss considered this work important and expected that it would be used
extensively in practical problems. As it turned out Gaussian quadrature and its
generalizations were found to be of considerable theoretical interest throughout
the 19th century. After the advent of computers it again attracted the attention

of applied mathematicians.



Jacobi in a series of papers, proved the quadrature formula without using
continued fractions. In the second of his papers he pointed out that the Ln(z)
are indeed the Legendre polynomials.

The people who extended the Gauss quadrature formula during the nineteenth
century, among whom Christoffel, Heine, Tchebycheff and Stieltjes are probably the
most notable (but Mehler, Radon, Markoff and Posse should also be mentioned), made
essential use of continued fraction considerations.

The pattern developed as follows (using the notation introduced by Stielt jes

only toward the end of the period). To obtain an approximation to

b
[ £(e) doce)
a

where ¢(t) € @c(a,b) , one obtains a J-fraction (1.6) which converges to the
integral

[T dd(e) |

az+t
for z & [-b, -a] . Let Kn(z)/Ln(z) be the n th approximant of this J-

2 ()

(n)
ko’ 'k

fraction. The constants in the quadrature formula

b § o ()
[ £C0) duCe) = kzl N E(R)

are determined by the partial fraction decomposition of Kn(z)/Ln(z) as in (2.3).

In the general case, the Kﬁn) 5 Tin)

depend on ¢ , but are independent of f .
The approximation is exact if f(z) 1s a polynomial of degree at most 2n-1 .
Using the correspondence between the integral and the J-fraction, one then

can prove the following:

b %
(2.4) [Tt L (-6) di(e) =0, k<m, m=1,2,3,...,
a
b n
(2.5) fa L (-t)L_(-t) dd(t) = vE1 k, 6n’m ,

where én o is the Kronecker & . One also has
’
b L (z)-L (-t)
(2.6) K(z) =[] 27 0" 74¢(t) -«
n a z+t

If one sets Pn(z) = (—l)nLn(—z) , it follows that {Pn(z)} is a sequence of
orthogonal polynomials with respect to ¢(t) , normalized so that the coefficient
of z“ in Pn(z) is 1 . It is for this reason that (to paraphrase

Gautschi [5, p. 82]) throughout the 19th century orthogonal polynomials were
generally viewed as the denominators Ln(z) of the nth approximant of a

J-fraction. It is now easily seen that

(2.7 Pn(z) = (z—ln)Pn_l(z) - knPn~2(z) s =23 00



10

where k_ >0 and L € R . The result, that a sequence {Pn(z)} satisfying
(2.7) 1is the sequence of orthogonal functions with respect to some ¢ , is usually
attributed to Favard who stated it in 1935. There are other claimants to having
been the first to have obtained this result. However, as Chihara [2, p. 209]

puts it very well: "This multiple discovery 1is not surprising since the theorem is
really implicitly contained in the theory of continued fractions. It seems quite
likely that mathematicians who worked with continued fractions were well aware of
the theorem, but never bothered to formulate it explicitly. Nevertheless, the
explicit formulation was a real contribution since most workers in orthogonal
polynomials tend to avoid continued fractions whenever possible.'

A very detailed survey of Gauss—Christoffel quadrature formulae was recently
given by Gautschi [5] .

We now turn to other major topics In our constellation. One of these 1is the
expansion of functions (both real-valued as well as analytic) in series of
orthogonal polynomials (or as Blumenthal in 1898 still said, "continued fraction
denominators™).

Expansions of this kind are important for many reasons. One of these where
continued fractions enter "naturally” is an interpolation problem of Tchebycheff of
1858 which involves determination of the finite J-fraction equal to the sum

n )\V

-1 z+T
v=1Z7T,

The interpolation problem can then be answered in terms of a finite sum ECVLV(Z) $
where the Lv(z) are the "continued fraction denominators”. Tchebycheff also
considered the limiting situation where one determines the infinite J-fraction

which is equal to an integral of the form

B o(t)dt
a z+t

at least in certain special cases. Other mathematicians who worked on this problem
during the 19th century were Heine, Pincherle, Darboux and Blumenthal.

R. Murphy in 1833-35 was probably the first to study a moment problem. He
referred to it as "the inverse method of definite integrals”. 1In this context he
encountered polynomials satisfying the orthogonality condition. Recognizing the
importance of the condition, he used the term "reciprocal functions” for what we
call today orthogonal functions. He was not as we mistakenly stated in [1l, p. 6]
the originator of the name “"orthogonal”. According to Gautschi [5, p. 78] , "The
name 'orthogomal' for function systems came into use only later, probably first in
E. Schmidt's 1905 Gottingen dissertation;..."” Murphy was interested, among others,

in the following problem. If
1k
foc f(t)dt =0 , k =0,1,2,...,0-1 ,

what can be said about f£(t) ? Clearly this 1is the question, to what extent a
finite set of moments determines the function f(t) . Tchebycheff starting in 1855



took an interest in moment problems. (Some of our information is taken from the

brief historical review in the book, The Problem of Moments by Shohat and

Tamarkin.) Among others, he was interested in the question whether from

f xnp(x)dx = f x"e ™ dx , n=20,1,2,... |,

2
one could conclude that p(x) = e ¥, According to Shohat and Tamarkin,

"Tchebycheff's main tool is the theory of continued fractions which he uses with

extreme ingenuity.” He also obtained the approximation for
X
[f(t)dt , a<x<b
a
given the moments
b
[Te"e(eyde .
a

Stielt jes in 1894 was able to pull together the work on moments of his predecessors
in a very satisfying manner at least as far as the interval [0,®) was concerned.
He used and refined the tools which had been introduced by the mathematicians we
have mentioned here. Stieltjes found necessary and sufficient conditioms for the
existence of a solution ¢ € @c(O,w) . He also described a way to obtain the

solution by first obtaining a continued fraction expansion of
G(z) = [ du(&)
0 z+t

valid for all z not on the negative real axis. By an inversion process he then
arrived at ¢(t) . It was not until 1920 that the general moment problem was
solved by Hamburger using J-fractions. Further work on the moment problem by

M. Riesz, R. Nevanlinna, Carleman, and Hausdorff in the early nineteen twenties
does not make use of continued fractions.

Another motivation of Stieltjes' work was the "summing"” of the divergent
series to which the continued fraction corresponds. The divergent series then
becomes an asymptotic expansion of the function (represented by the integral) to
which the continued fraction converges. Stieltjes had written his thesis in 1886
on asymptotic series (he called them semi-convergent)the same year in which
Poincaré wrote a fundamental paper on the subject.

The history of integral representation of continued fractions 1is sketched in

Section 4 .

3. Semi-positive T-fractions. In [13] we gave references for the history

of general T-fractions. 1In that article we also proved the general theorem for

correspondence, which, in terms of LO and L_ of (1.3) , and without

loss of generality, can be stated as follows.

Theorem 3.1. Let
m -m
L E C_n? and L = Z cnZ

be given. Then there exists a general T-fraction




