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Foreword

The present book is the English edition of my book published
originally, in Japanese, by the Iwanami Shoten in the series “Iwa-
nami Zensho.” It was intended to be a self-contained exposition of
the theory of ordinary differential equations and integral equations.
It especially gives a fairly detailed treatment of the boundary value
problem of second order linear ordinary differential equations, and
includes an elementary exposition of the theory of Weyl-Stone’s
eigenfunction expansions in the form completed by Titchmarsh-
Kodaira’s formula concerning the density matrix of the expansion.

The author wishes to express his sincere thanks to Professor
Shigeharu Harada of Chiba Institute of Technology for his time and
effort in preparing the English translation of this book, and to
Professor Lipman Bers of New York University for his kind sugges-
tion to include this book in his series.

The author also extends his cordial thanks to the Iwanami Shoten
and the Interscience Publishers, Inc., who kindly agreed to the
publication of the English edition, and to the International Academic
Printing Company for the painstaking work of printing the book.

August, 1960 Ko6saku Yosipa
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CHAPTER 1

THE INITIAL VALUE PROBLEM FOR ORDINARY
DIFFERENTIAL EQUATIONS

An nth order ordinary differential equation is a functional relation

dy d*y dry
F y Yy T y * % =
<x 4 dx’ dx? dx» ) Q
between a variable x, an unknown function y, and its derivatives
dy dy o dy
dx’ dx*’ O dx»

A function y(x) which satisfies this relation is called a solution of
the differential equation. For example, for any constant C, the
function

y=sin(x — C)

is a solution of the first order equation

dy \? .
(G5) +»-1=0
In general, the general solution of an nth order equation contains »n
arbitrary constants C;, C,, -+, C». These constants may be deter-

mined by so-called initial conditions at a point x = x,, which are the
prescribed values of y, dy/dx, - --, d*'y/dx"* at the point x =x,. The
solution thus obtained is called a particular solution.

In this chapter, we shall show that the initial value problem for
differential equations can be reduced to a system of integral equa-
tions and solved by the method of successive approximations. This
chapter is intended as a prerequisite for the theory of the differential
equations as considered in the following chapters. '

§1. Successive approximations

1. Existence and uniqueness of the solution of the ordinary
dijj‘erjential equation of the first order

An ordinary differential equation of the first order is generally
written in the form

(1.1 F(x,y,dyldx)=0
1



2 DIFFERENTIAL AND INTEGRAL EQUATIONS

In the following, we shall restrict ourselves to those cases in which
(1.1) can be solved for dy/dx and written in the form

1.2) dyldx = f(x, )
The simplest case of (1.2) is of the form
(1.3) dyldx = f(x)

The solution of (1.3) is given by
(1.4) yuy=rﬂ0m+c
Zo .

in the region where f(x) is continuous. The integration constant C
is determined by the value of y(x) at x = x,, that is,

(1.5) Yo =¥(x) =C

Accordingly, the solution of (1.3) satisfying the condition y = 3, at
x = x, is given by

1.6) ¥x) = yo + S’f(t) dt

The condition,
(1.5") y=3, at x=x

is called the initial condition for the solution of the differential
equation (1.3).

Our purpose is to find a solution of the general equation (1.2)
subject to the initial condition (1.5’). To formulate the problem
precisely, we make the following assumptions concerning f(%, ).

AssumptioN 1. The function f(x, y) is real-valued and continuous
on a domain' D of the (x, y)-plane given by

1.7 f—as<xsSx+a, N—b=ysy+b

where @, b are positive numbers.
AsSSUMPTION 2. f(x,y) satisfies the Lipschitz condition with respect
to y in D, that is, there exists a positive constant K such that

(1.8) 1f(x, 50 — f(x, 9] = K|y — 321

for every pair of points (x,y,), (x, ¥:) of D.

1 By a domain, we mean a nonempty open connected set, and by a closed
domain, the closure of a domain. However, we shall use the word “‘domain’’
to denote ‘‘closed domain,”’ when the domain is explicitly defined as 1.7).
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Remark. The second assumption would seem to be less natural
than the first, but its importance will become clearer in the follow-
ing proof.

It is worth while to show that if f(x,y) has a continuous partial
derivative 81 (x, y)/@y on D, then f(x, y) satisfies the second assump-
tion. This is seen as follows. Since |9f(x,y)/dy| is continuous on
the bounded closed domain D of the (x,y)-plane, [8f(x, )0y is
bounded on' D. Put

1.9 K = supe.men

af (x,¥) l
oy

Then the mean-value theorem implies that (1.8) holds for f(x, y).
By Assumption 1, |f(x,¥)| is continuous on the bounded closed
domain D, therefore |f(x, )| is bounded on D, that is,

(1.10) SUPz.men | f (X, )| = M< oo
Set
(1.11) h = min (a, b/M)

Let us define a sequence of functions {y.(x)} for |x— x| =h,.
successively, by

yo(x) =Y
i) = 3o+ S”f(t, yolt)) dt

(1.12) 92x) = o + S’f(t, (b)) dt

ya(X) = Yo + Sxf(t, Y1) dt

The theorem to be proved is that {y.(x)} converges uniformly on the
interval |x — x,| < h, and the limit y(x) of the sequence is a solution
of (1.2) which satisfies (1.5').

Proof. According to (1.10) and (1.11), we obtain

|9:(x) — Yo | ERM = b

for |x — x| < h. - Therefore % f(t y.(t))dt can be defined for
|x — x| = h, and

[yx) — 3| SAM £ b
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In the same manner, we can define y;(x), -, ya(x) for |x — x| < &,
and obtain

Iye(x) — v | EhM <b, k=12 ---,n

Using Assumption 2, we have

| Yea() — (0)| < K S | 9(8) — ea(D) | dt

Zo

for |x — x,| £ h. Therefore, if we assume that, for k=1,2, -+, n,
. —1
(1.13)  1ye(x) — ye—(x) | = HE 15— for [x — x| =h
(B —1)
we obtain, for k=#»n + 1,
1.14) [ Yne(®) — ya(®) | < M"‘n,——x”) for |x — x| < h

Since (1.13) holds for £ =1 as mentioned above, we see, by mathe-
matical induction, that (1.14) holds for every #. Thus, for m > n
we obtain

(118 13m®) = D) | £ 3] |yen() = )| 5075 HBE

Since the right side of (1.15) tends to zero as n — o, {y.(x)} con-
verges uniformly to a function y(x) on the interval |x — x,| < h.
Since the convergence is uniform, y(x) is continuous and moreover,
evidently, y(x,) =y,. To prove that y(x) is a solution, we use the
following known fact: If the sequence of functions {y.(x)} converges
uniformly and y.(x) is continuous on the interval |x — x,| < 4, then

T S yu(®) dx = S Fitun o L) i

Zo g
Hence we obtain

y(x) = limys yn-H(X)

= o + limno S F(t, yult)) dt
%o

T S iMocn £ (£, yu(D)} dt

%o

x

- +S £t y(t)) dt

Zo

that is,
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(1.16) s =+ [ ftywrar, lx—nish
g o

The integrand f(¢, ¥{f)) on the right side of (1.16) is a continuous
function, hence y(x) is differentiable with respect to x, and its
derivative is equal to f(x, y(x)), q.e.d.

The method of the above proof is called the method of successive
approximations, or Picard’s method.

Integrating from x, to x, we see that a solution y(x) of (1.2)
satisfying the initial condition (1.5’) must satisfy the integral equa-
tion (1.16). The above proof shows that this integral equation can
be solved by the method of successive approximations.

Uniqueness of the solution. We have obtained, by the method of
successive approximations, a solution y(x) of (1.2) satisfying the
initial condition (1.5’). However, there remains another important
problem, the problem of uniqueness: Is there any other solution
satisfying the same initial condition? If the solution is not unique
and there are solutions other than the y(x) obtained above, we must
find other methods to obtain them. Fortunately, under our two
assumptions, we can prove the uniqueness of the solution. To see
this let z(x) be another solution of (1.2) such that z(x,) = ¥,. Then

dﬂ=%+§f@4mﬂ
o
By Assumption 2, we obtain

(1.17) |yx) — 2(x)| = K

Sﬁﬂn—wnm

Zo
Therefore we also obtain for |x —x, | <k

|¥(x) — 2(x)| = KN|x — x|
where

N= Sup|z~zoléh ]y(x) - Z(x)]

Substituting the above estimate for |y(¢) — z(¢)| on the right side of
(1.17), we obtain further

| y(x) — 2(x) | < N(K|x — x,1)%/2!

for |x —x,| £ h. Substituting this estimate for |y(¥) —z(¢)| once
more on the right side of (1.17), we have

[(x) — 2(x)| = N(K|x — x,1)*/3!
for |x —x,| < h. Repeating this substitution, we obtain
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|¥(x) — 2(x)| = NK|x —x)"/m!  m=12,---

for |x — x,| < h. The right side of the above inequality tends to
zero as m — oo, This means that

N = supjz—z;isn | p(x) — 2(x) |

is equal to. zero, g.e.d.
ExampLe. To illustrate the general procedure, we shall solve the
differential equation

dyldx =y

under the initial condition y(0) =1 by the method of successive
approximations. We have from (1.12) :

yl(x>=1+Szdt=1+x
0

4 xZ
yz(x)=1+g(1+t)dt=1+x+-27
0 S

................

1+ (1+2+ L Al
() = +go( ot +(n_1)!)

xZ
=1+x+ 54+

In this way we obtain the well-known formula

x"
0 n!

Ms

¥(x) = liMnoeyn(x) = €Xpx =

2. Remark on approximate solutions
Letting m — o in (1.15), we obtain

@.1) 13x) — yax)| s b 5, KRS
i=n k!

for |x — x| < h. The equation (2.1) is an estimate of the error of the
nth approximate solution ya(x). In view of (2.1), the method of
successive approximations may be used, in principle, to obtain
an approximate solution to any degree of accuracy. This method,
however, is not always practical because it requires one to repeat
the evaluation of indefinite integrals many times.

We shall now consider another method which is sometimes rather
useful. Suppose that g¢(x,y) is a suitable approximation to f(x,y)
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such that we can find the solution z(x) of the differential equation
2.2) dzldx = g(x, y)

on the interval |x — x,| < & satisfying the initial condition z(x,) = ¥.
We put

2.3) Supcz.men | f(*,¥) —9(x, 3| = ¢
Let y(x) be the unique solution of the differential equation
(2.4) dyldx = f(x, )

on the interval |x — x, | < h satisfying the initial condition y(x,) = ¥o.
Then from (2.2) it follows that

z

y(x) — 2(x) = S {F (8, 9(8) — o(t, 2)} dt

x

We obtain by Assumption 2

(2.5) [y(x) —2(x)| =

S' {8, 28) — glt, 2t} dt

z

+ g (& 50 — £t 2} dt ‘

<

S’ £ (t, 2(8) — g8, 2(B) | dt]

%o

+ K

S’” 5(8) — 2(t) | dt [

Zo

és'x—“XQI+K

S” |3(t) — 2| dt [

o
Therefore, setting
SUPjz-zgisn | (%) — 2(x) | = M'
~ we have
ly(x) —2(x) | S elx — x| + KM' | x — x|

for |x — x,| < h. Substituting this estimate for | y(#) — 2(#)| on the
right side of (2.5), we obtain

2 _ 2 2
K |x2' X | +eS

m=

Km—ilx o x0|m

|y(x) — 2(x)| = M’ —

-

for |x — x,| < h. Repeating this substitution, we obtain, for each
n=123,---,
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K"Ix—xo\"

n!

Km-t lx — % Im
m!

ly(x) —2(x)| = M 2"}

for |x — x,| < h. As n— oo, the first term on the right side con-
verges to zero uniformly on the interval |x — xol < h. The second
term is less than

e K{exp(Kl|lx —x,1) — 1}

Accordingly, the estimate of the error of the approximate solution
z(x) in the interval |x — x,| = h is given by

(2.6) |y(x) — 2(x)| < (e/K) (exp (K|x — % 1) — 1)
ExampLE. Consider the initial value problem
dyl/dx = sin (xy)

with the initial condition y(0) = 0.1. We shall calculate the estimate
of the error of the approximate solution z(x) = 0.1 exp (3x*) which is
the solution of the equation

dyldx = xy
satisfying the initial condition 2(0) = 0.1. We take the domain
x|l =%, ly—01]=3%

as D, sothat ¢ = b= %. Then we have M = sup¢.ynep|sin(xy)| < 1.
Moreover, by the mean-value theorem, we have

|'sin (xy,) — sin (xy2) | = |2y — %2 |

Hence we may set the Lipschitz constant K = 4. Since a =b6= %,
and M < 1, we have » = min(a, b/M) = 4. Moreover |z(x)| < % for
|x| < h=4%. Hence by the Taylor expansion theorem we obtain

|x 2(x) °
6

for |x| < 4. Setting ¢ = 54, and K = % in (2.6), we obtain

| f(x, 2(x)) — glx, 2(x)) | < |sin (x2(x)) —x2(x)| =

A

1
384

156 = @) exp (1)1 S siefexp (5) — 1} = 04 12!
as the estimate of the error of the approximate solution z(x).

3. Integration constants

As was shown in Part 1, a particular initial condition (1.5) deter-



