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Editor’s Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most llkely to
survive change of style and of interest.

.. This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes
‘and sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

G1AN-CARLO ROTA



Foreword

Galois theory is ofter cited as the beginning of modern “abstract” algebra.
The ancient problem of the algebraic solution of polynomial equations
culminated, through the work of Ruffini, Abel, and others, in the ideas of
Galois, who set forth systematically the connection between polynomial
equations and their associated groups. This was the beginning of the
systematic study of group theory, nurtured by Cauchy and Jordan to its
flowering at the end of the last century. It can also be viewed as the
beginning of algebraic number theory (although here other forces were also
clearly at work), developed later in the century by Dedekind, Kronecker,
Kummer, and others. It is primarily this number-theoretic line of develop-
ment that is pursued in this book, where the emphasis is on fields, and only
secondarily on their groups.

In addition to these two specific outgrowths of Galois’s ideas, there
came something much broader, perhaps the essence of Galois theory: the
systematically developed connection between two seemingly unrelated sub-
jects, here the theory of fields and that of groups. More specifically, but in
the same line, is the idea of studying a mathematical object by its group of
automorphisms, an idea emphasized especially in Klein’s Erlanger Program,
which has since been accepted as a powerful tool in a great variety of
mathematical disciplines.

Apart from the historical importance of the Galois theory of fields,
its intrinsic interest and beauty, and its more or less direct applications to

XV



Xvi Foreword

number theory, these many generalizations and their important appiications
give further compelling reasons for seeking an understanding of the theory
in its classical form, as presented in this volume. The Galois theory of field
extensions combines the esthetic appeal of a theory of nearly perfect beauty
with the téchnical development and difficulty that reveal the depth of the
theory and that make possible its great usefulness, primarily in algebraic
number theory and related parts of algebraic geometry.

In this book Professor Bastida has set forth this classical theory, of
field extensions and their Galois groups, with meticulous care and clarity.
The treatment is self-contained, at a level accessible to a sufficiently well- -
motivated beginning graduate student, starting with the most elementary
facts about fields and polynomials and proceeding painstakingly, never
omitting precise definitions and illustrative examples and problems. The
qualified reader will be able to progress rapidly, while securing a firm grasp
of the fundamental concepts and of the important phenomena that arise in
the theory of fields. Ultimately, the. study of this book will provide an
intuitively clear and logically exact familiarity with the basic facts of a
comprehensive area in the theory of fields. The author has judiciously
stopped short (except in exercises) of developing specialized topics im-
portant to the various applications of the theory, but we believe he has
realized his aim of providing the reader with a sound foundation from
which to embark on the study of these more specialized subjects.

This book, then, should serve first as an easily accessible and fully
detailed exposition of the classical Galois theory of field extensions in its
simplest and purest form; and second, as a solid foundation for and
introduction to the study of more advanced topics involving the same
concepts, especially in algebraic number theory and algebraic geometry.

We believe ‘that Professor Bastida has offered the reader, for a
minimum of effort, a direct path into an enchantingly beautiful and excep-
tionally useful subject. !

ROGER LYNDON



Preface

Since its inception at the beginning of the nineteenth century, the theory of
field extensions has been a very active area of algebra. Its vitality stems not
only from the interesting problems generated by the theory itself, but also
from its connections with number theory and algebralc geometry. In writing
this Look, our principa' objective has been to make the general theory of
field extensions accessible to any reader with a modest background in
groups; rings, and vector spaces.

The book is divided into four chapters. In order ‘o give a precise idea
of the background that the reader is expected to possess, we have preceded
the text by a section on prerequisites. Except for the initial remarks, in
which we indicate the restrictions that will be imposed on the rings
considered throughout our presentation, the reader should not be concerned
with the contents of this section until explicit reference is made to them. The
first chapter is devoted to the general facts on fields and polynomials
required in the study of field extensions. Although most of these facts can
be found in one or another of the references given in the section on
prerequisites, we have attempted to facilitate the reader’s task by having
them collected and stated in a manner suitably adapted to our purposes.

The theory of field extensions is presented in the subsequent three
chapters, which deal, respectively, with algebraic extensions, Galois theory,
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Xviii Preface

and transcendental extensions. The chapter on algebraic extensions is of
basic importance for the entire theory, and has to be thoroughly understood
before proceeding further. The last two chapters, on the other hand, can be
read independently of each other.

. Chapters are divided into sections, and each section ends with a set
of problems. The problems include routine exercises, suggest alternative
proofs of various results, or develop topics not discussed in the text. We
have refrained from identifying the more difficult, and as a rule, no hints are
given for the solutions. A result stated in a problem is not used in the text,
but it may be required for the solution of a later problem.

The choice of material was dictated by the dual objective of provid-
ing thorough coverage of each topic treated and of keeping the length of the
book within reasonable bounds. We decided to include in the text the results
that constitute the core of the general theory of field extensions. Those parts
of the theory sufficiently developed to merit a book of their own have been
left out entirely, and several specialized topics of considerable interest have
been relegated to the problems. We have not attempted to discuss any
serious applications of our subject to number theory or algebraic geometry,
since doing this would have required the introduction of additional back-
ground material. However, as the reader cannot fail to notice, connections
with number theory manifest themselves occasionally in the presentation.

We have included bibliographical notes at the end of each chapter.
These will provide the reader with references to the works in which
important contributions were first published, with easily available references
on topics presented as problems and on alternative treatments of topics
covered in the text, and with suggestions for further reading.

The reference list at the end of the book comprises mainly the works
cited in the text and notes. The vast literature on field extensions and Galois
theory and on their applications to number theory and algebraic geometry
cannot be surveyed, even superficially, within the confines of a few pages.
To get a good idea of the present state of the literature, the reader may
consult the pertinent sections of Mathematical Reviews, the review journal
of the American Mathematical Society. '

It is with the deepest gratitude and respect that we acknowledge the
help given to us by Professor Harley Flanders, without which this book
could not have been written. He read the manuscript and made very
substantive suggestions on both content and style; offered us unrestricted
access to his notes on field extensions; discussed proofs, examples, and
problems with us; and never betrayed the slightest impatience in dealing
with us during the four-year period that we worked on this book.

We would also like to express our sincere appreciation to Professor
Gian-Carlo Rota, for his kind invitation to write a volume for the Encyclo-
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pedia; to Professors Paul M. Cohn and Roger C. Lyndon, for their valuable
suggestions; to Professors Tomas P. Schonbek and Scott H. Demsky, for
their help with the bibliographical material; to my students Lynn Garrett
and Jaleh Owliaei, for their comments; to Ruth Ebel and especially Rita
Pelava, for their efficient typing; and to my colleagues at Florida Atlantic
University, for their constant encouragement. ]

Jurio R. BASTIDA
Boca Raton, Florida



Historical Introduction

Problems of geometric construction appeared early in the history of
mathematics. They were first considered by the Greek mathematicians of
the fifth century B.C. Only two instruments—an unmarked ruler and a
compass—were permitted in these constructions. Although many: such
constructions could be performed, others eluded the efforts of these
mathematicians. Four famous problems from the period that remained
unsolved for a long time are the following: doubling' the cube, which
consists of constructing a cube whose volume is twice that of a given cube;
trisecting the angle; squaring the circle, which consists of constructing a
square whose area is that of a given circle; and constructing regular
polygons.

; At the end of the eighteenth century, when it was observed that
questions on ‘geometric constructions can be ‘translated into questions on
fields, a breakthrough finally occurred. The 19-year-old Gauss [2: art. 365]
proved in 1796 that the regular 17-sided polygon is constructible. A" few
years later, Gauss [2: art. 365, 366] stated necessary and sufficient condi-
tions for the constructibility of the regular n-sided polygon. He gave a proof
only of ‘the sufficiency, and claimed to have a proof of the necessity; the
latter was first-given by Wantzel [1] in 1837. In his investigations, Gauss
introduced and used a number of concepts that became of central impor-
tance in subsequent developments. A by-product of the works of Gauss and
Wantzel on regular pclygons was a proof that an arbitrary angle cannot be
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XXii Historical Introduction

trisected. The proof of the impossibility of doubling the cube is more
elementary, but its discovery is difficult to trace. As to the remaining
problem, it was realized that the proof of the impossibility of squaring the
circle depended on knowing that the number 7 is transcendental; this
missing ingredient was supplied in 1882 by Lindemann [1], who used
analytic techniques to settle one of the more fascinating questions in this
area of mathematics.

The general theory of fields evolved during the last half of the
nineteenth century, when the algebraists made significant advances in the
study of algebraic numbers and algebraic functions. The first systematic
exposition of the theory of algebraic numbers was given in 1871 by
Dedekind [4]; in this work, Dedekind introduced the basic notions on fields,
but restricted the field elements to complex numbers. As regards transcen-
dental numbers, the early contributions were made by analysts. The most
notable of these contributions were that by Liouville {1] in 1851, devoted to
the construction of classes of transcendental numbers, and those by Hermite
[2] in 1873 and Lindemann [1] in 1882, in which proofs are given of the
transcendence of the numbers e and =, respectively. But it was not until
1882 that transcendentals made their appearance in the theory of fields,
when Kronecker [2] succeeded in using the adjunction of indeterminates as
the basis for a formulation of the theory of algebraic numbers. It was also in
1882 that fields of algebraic functions of complex variables were introduced
by Dedekind and Weber [1] in order to lay the foundations of the arithmeti-
cal theory of algebraic functions. This work, in which a purely algebraic
treatment of Riemann surfaces is given, marks the beginning of what was to
become a very fruitful interplay between commutative algebra and algebraic
geometry. It was next discovered in 1887 by Kronecker [3] that every
algebraic number field can be obtained as the quotient of the polynomial
domain Q[ X] by the principal ideal generated by an irreducible polynomial,
showing in effect that the theory of algebraic numbers does not require the
use of complex numbers. Finally, the abstract definition of a field as we
know it today was given in 1893 by Weber [1] in an article on the
foundations of Galois theory. Weber also observed in this work that
Kronecker’s construction can be applied to arbitrary fields, and in particular
to every field of integers modulo a prime; and that as a result, we recover
the theory of higher congruences previously developed by Galois [2], Serret
[1: 343-370], and Dedekind [2].

The final step toward the axiomatic foundations of the theory of
fields was taken by Steinitz [1] in 1910. Spurred on by both the earlier
contributions and the discovery by Hensel [1] of the p-adic fields, Steinitz
set out to derive the consequences of Weber’s axioms. His work, in which
field extensions were first studied in full generality and in which normality,
separability, and pure inseparability were introduced in order to give a
detailed analysis of the structure of algebraic extensions, became the corner-



Historical Introduction Xxiii

stone in the development of abstract algebra. In the words of Artin and
Schreier [1]: “E. Steinitz hat durch seine ‘Algebraische Theorie der Korper’
weite Gebiete der Algebra einer abstrakten Behandlungsweise erschlossen;
seiner bahnbrechenden Untersuchung ist zum grossen Teil die starke Ent-
wicklung zu danken, die seither die moderne Algebra genommen hat”. It is
in the closing pages of Steinitz’s article that the theory of transcendental
extensions was first presented. However, before this theory could be brought
to its present state, two significant additions were yet to be made, both
partially motivated by questions in algebraic geometry. In 1939, MacLane
[1] introduced the notion of separability for transcendental extensions. This
was then followed in 1946 by the treatise on the foundations of algebraic
geometry by Weil [1], in which the abstract notion of derivation is intro-
duced in the study of separability.

Galois theory is generally regarded as one of the central and most
beautiful parts of algebra. Its creation marked the culmination of investiga-
tions by generations of mathematicians into one of the oldest problems in
algebra, the solvability of polynomial equations by radicals. The familiar
formula for the roots of the quadratic equation was essentially known to the
Babylonian mathematicians of the twentieth century B.c. No significant
progress was made on polynomial equations of higher degree until the
sixteenth century, when del Ferro and Ferrari discovered the formulas for
the cubic and quartic equauons respectively. These results were first pub-
lished by Cardano [1] in 1545; it is probably for this reason that Cardano’s
name has been tradmonally associated with the formulas for the cubic
equation. ik

These formulas express the roots of the equations in terms of the
coefficients, using exclusively the field operations and the extraction of
roots. Attempts to find such formulas for polynomial equations of higher
degree were unsuccessful; and partly as a consequence of the work of
Lagrange [2;3] in 1770-1772, the algebraists of the period came to believe
that it was impossible to derive them. This was proved to be the case at the
beginning of the nineteenth century. Several proofs were published by
Ruffini [1] between 1799 and 1813, but they were incomplete. The first
satisfactory proof was given by Abel [2] in 1826, three years before his tragic
death before the age of 27; between 1826 and 1829 he obtained further
results on the solvability of polynomial equations by radicals, which were
published in Abel [3; 1: II, 217-243, 269-270, 271-279].

The contributions of Ruffini and Abel were followed by the decisive
results of Galois [1: 25-61] in 1832. Galois proved that the solvability of a
polynomial equation by radicals is equivalent to a special property of a
group naturally associated with the equation. Galois made this discovery .
before the age of 20, at a time when abstract algebra virtually did not exist!

'Although Galois’s result on the solvability of polynomial equations
by radicals settled a problem that had eluded the efforts of some of the
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greatest mathematicians of earlier generations, later developments have
shown that the ideas introduced by Galois in his solution surpass by far the
importance of the problem that he originally set out to solve. First, Galois
defined and used the group-theoretical properties of normality, simplicity,
and solvability, which play a significant role in the theory of groups.
Moreover, he solved a problem of fields by 4ranslating it into a-more
tractable problem on groups; in so doings he probably made the earliest
application of a method that has become pervasive in algebra, namely, that
of studying'a mathematical object by suitably relating it to a mathematical
object with a simpler structure. Nor is it an exaggeration 10 say that Galois
theory is a prerequisite for much current research in-number theory and
algebraic geometry. :

The story of Galois’s life is a topic of considerable controversy. A
gifted mathematician who is killed in a duel at the age of 20 presents
unlimited opportunities for the creation of a myth. Unfortunately, this is
precisely what several well-known authors have done in their writings on
Galois. By means of intentional or unintentional omissions and distortions,
legends have been created in which Galois is portrayed as a struggling
genius unappreciated not only by the general public, but also by some of the
leading mathematicians of his time. The recent article by Rothman [1] offers
a lively account of such theories, as well as a careful attempt to unravel
them.

Galois’s ideas were expressed originally within the context of the
theory of equations: To each polynomial equation is assigned a group of
permutations of its roots. The progress made toward the axiomatic founda-
tions of algebra in the last part of the nineteenth century had a considerable
impact on Galois theory. Dedekind [4] observed that a more natural setting
for Galois theory is obtained by regarding the groups associated with
polynomial equations as groups: of automorphisms of the corresponding
splitting fields. Furthermore, he pioneered the systematic use of linear
algebra in Galois theory. Since the abstract theory of field extensions was
not developed until the first decade of the present century, Dedekind had to
restrict his considerations to special types of fields. That his formulation of
Galois theory remains meaningful for arbitrary fields was shown subse-
quently by the works of Weber [1] in 1893, of Steinitz [1]in 1910, and of
Artin [3] in 1942. It is to these algebraists, and especially to Artin, that we
owe what is now considered to be the definitive exposition of the Galois
theory of finite groups of field automorphisms. A further contribution that
must be mentioned is the generalization of the principal results of : this
theory to: a special type of infinite groups of field automorphisms, dis-
covered by Krull {1] in 1928.



Prerequisites

We shall assume that the reader possesses a certain familiarity with the
rudiments of abstract algebra. More specifically, in addition to the basic
properties of integers, sets, and mappings, the reader is expected to know
the elementary parts of the theory: of groups and the-theory of rings, and to
possess a reasonable background in linear algebra. Suggested references on
these prerequisites are the following.

1. Adamson, I. T. Elementary Rings and Modules. New York: Harper &
Row, 1972.

2. Godement, R, Cours d’Algébre. Paris: Hermann, 1963. (English transla-

tion: Algebra. New York: Houghton Mifflin, 1968.)

" Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 1974.

4. Hoffman, K., and Kunze, R. Linear Algebra. Englewood Cliffs, NJ:
Prentice-Hall, 1971. ‘

5. Ledermann, W. Intrcduction to Group Theory. Edinburgh: Oliver &

* Boyd, 1973. ' ‘

6. Rotman,’J. J. The Theory of Groups, an Introduction. Boston: Allyn &
Bacon, 1973.

e

This list is not intended as an exhaustive bibliography on the basic
concepts of algebra. We have simply selected six easily accessible books
that, for our purposes, are particularly suitable as references. The books [1]
and [2] seem the most convenient: In the first place, we shall adhere almost
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