An Infroduction to

PROGRAMMING
AND
PROBLEM
SOLVING
WITH PASCAL

Second Edition

/j g
"~ G.Michael Schneider
Steven W. Weingart

David M. Periman

G. Michael Schneider
Macalester College, St. Paul, MN
Co-authors of the first edition:

Steven W. Weingart
Data General Corporation

David M. Perlman
Cray Research

8 Second Edition

AN INTRODUCTION

TO PROGRAMMING
AND PROBLEM
SOLVING
WITH PASCAL

John Wiley & Sons
New York Chichester

"Brisbane

Toronto

Singapore

To my wife, Ruthann, and my children, Benjamin and Rebecca

Copyright © 1978, 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data

Schneider, G. Michael.
An introduction to programming and problem
solving with PASCAL.

Bibliography: p.

Includes indexes.

1. PASCAL (Computer program language) 2. Electron-
ic digital computers — Programming. 1. Weingart,
Steven W. II. Perlman, David M. III. Title.

QA76.73.P2836 1982 001.64'24 82-2809
ISBN 0-471-08216-3 AACR2
ISBN 0-471-80447-9 pbk.

Printed in the United States of America

20 19 18 97 416 15 94 43

FOREWORD

The maturation of programming into an art or a science is characterized by our ability
to abstract essential principles from particular cases. As fundamental concepts emerge,
a notation is needed to express them. We have become accustomed to calling such a
formal notation a ‘‘language.’’ The better it is tailored toward expressing the essential
abstractions, the better it is suited to introduce the subject of programming, because
the more it can recede into the background. Ideally, the language presents itself as
the natural notation to express the basic concepts of programming, and it should hardly
need further attention and explanation.

Yet, in the design and analysis of algorithms, we are forced to express ourselves
unusually exactly. This implies that we need a thorough mastery and precision in
understanding our language. Is it therefore surprising that its details still consume a
considerable amount of time in teaching the art of programming?

The language Pascal was developed in the late 1960s in recognition of the fact
that the language used is of paramount importance in programming. The authors of
this book have chosen Pascal as a vehicle, and they are able to concentrate on the
fundamental principles of programming and problem solving. Nevertheless, the details
of the language are given due attention, and they are clearly motivated. Consequently,
they appear as rules that can be understood instead of merely being memorized. The
book explains the style of programming that was the guiding idea in the design of
Pascal. By explicitly motivating the principles of structured programming and the
corresponding features of Pascal, it provides insight instead of merely coverage.

N. Wirth
Ziirich, Switzerland August 1977

PREFACE

This textbook represents the culmination of my efforts to develop an introductory pro-
gramming course that would reflect the growing concern for teaching the design and
development of high-quality, reliable software. It follows closely the outline of the
course entitled CS1, Computer Programming I, as described in ACM Curriculum ’78.
(Communications of the ACM, March, 1979.) Too often a student’s introduction to
programming has been through a service course where the major concern is the syntax of
some elementary programming language, and the programs are graded solely on the
basis of whether or not they produce correct results. Unfortunately, these service courses
often instill and reinforce bad programming habits, and later attempts to ‘‘unlearn’’ them
are usually futile. (In this respect it is interesting to note that the students who encounter
some difficulty in the course are not the ones without prior programming experience, but
those who have already had a low-level exposure to FORTRAN or BASIC. These stu-
dents are forced into rethinking their approach to programming.)

[t is incorrect to assume that beginning programming students are unable to handle
“‘higher-level’” concepts. I have found it both reasonable and worthwhile to present
the topics of problem specifications and algorithm development, top-down modular
programming, structured coding, and program testing along with details of a particular
language. When these topics are introduced during the initial stages of learning, they
instill good programming habits immediately. The results are solutions that are well
thought out, programs that are well structured, and documentation of high quality.
This is simply because our students have not been taught any other way. To them, it
is the normal way of doing things.

This book has three goals; in order of importance, they are:

1. Introducing all aspects of the programming and problem-solving process,
including problem specification and organization, algorithms, coding, de-
bugging, testing, documentation, and maintenance.

2. Introducing what constitutes good programming style and how to produce a
high-quality finished product. These points are brought out in numerous Style
Clinics throughout the text.

3. Teaching the syntax of the Pascal programming language.

[have chosen to use Pascal as the programming language because it is an excellent
language for introducing these concepts. However, 1 did not wish merely to replace

iv

PREFACE v

a FORTRAN-based service course with a Pascal service course. Instead, 1 wanted to
develop a textbook that uses Pascal as a vehicle to introduce a range of programming
concepts. Although a large portion of this book is directed, of necessity, toward our
third goal, this should be viewed in its proper perspective.

Chapters 1 and 2 introduce the student to the preparatory work that must be done
prior to the coding phase—problem specification and algorithm development. Chapters
3, 4, and 5 introduce the basic elements of the Pascal language. In class I treat the
syntactic details to these chapters quickly and prefer to concentrate on the stylistic
aspects discussed in the text and in the style clinics. Chapter 6 discusses debugging,
program testing, documentation, and maintenance. Chapters 7 to 10 introduce the
remaining features of Pascal, including subprograms and advanced data structures.
Again, in class the syntactic rules are covered quickly, and the conceptual and stylistic
details are considered at greater length. Chapter 11, one of the most important chapters
in the book, discusses techniques for developing and managing large ‘‘real-world™
problems and writing quality programs. Sufficient time should be allowed to ensure
that the material in that chapter is treated adequately.

This text is currently being used in a one-quarter introductory undergraduate com-
puter science course at the University of Minnesoty and Macalester College. The stu-
dents include both computer science and noncomputer science majors. This textbook
assumes no prior programming experience or extensive mathematical background on the
part of the student. The programming examples have been chosen to span a wide range of
numeric and nonnumeric applications. In addition, I have avoided aspects of Pascal that
might be specific to a particular computer system. Where machine-dependent details are
required (e.g., control cards), I have referred the student to his or her instructor for the
necessary information.

I would like to thank my coauthors on the first edition, Steven Weingart and
David Perlman. Although they were unable to assist in the preparation of the second
edition, I have borrowed freely from their original ideas and writings.

I also thank two people whose names do not appear on the front cover but who
contributed significantly to the production of the book: Rajiv Kane, who helped to
test the numerous programming examples in the book, and Sandy Whelan, who typed
and proofread the final manuscript. I am grateful to the many referees whose excellent
suggestions were so liberally used. Special thanks must go to Andy Mickel of the
University of Minnesota Computer Center who reviewed the manuscript and initiated
and encouraged my interest in Pascal as a language tool for teaching programming.
Without the help of these people, this project would still be only an idea.

I sincerely hope that this book will contribute to an improvement in the quality
of programming instruction and to the view of computer programming as a rational
and organized discipline.

G. Michael Schneider

STYLE CLINICS

1-1

THINK FIRST, CODE LATER ¢
2-1

DON'T REINVENT THE WHEEL 50

2-2
WHAT IS EFFICIENCY? 58

2-3

THE FUNDAMENTAL
IMPORTANCE OF ALGORITHMS
59

3-1
ACCURACY OF REAL NUMBERS
72

3-2

PORTABLE PROGRAMS 7+
3-3

SYMBOLIC CONSTANTS 79
3-4

VARIABLE NAMES 90

4-1
PARENTHESES 9

4-2
INPUT VALIDATION AND
ECHO PRINTING /6

4-3
OUTPUT WITH STYLE 12/

4-4
COMMENTS /24

4-5
INDENTATION /26

4-6
BATCH ACCESS VERSUS
TIME-SHARING /33

5-1
TOO LOW A TIME LIMIT? /49

5-2
END-OF-DATA INDICATORS
154

5-3
OFF-BY-ONE ERRORS /59

5-4
CLARIFYING THE FLOW OF
CONTROL /70

x STYLE CLINICS

5-5
THE GOTO CONTROVERSY 52

5-6
WHICH LOOP PRIMITIVE
SHOULD | USE? /53

6-1
CLEAR PROGRAMS AND
SOFTWARE ENGINEERING 206

6-2
HOW NOTTO DEBUG
PROGRAMS 2;;

6-3
ROBUSTNESS 23

6-4
INSTRUMENTING YOUR
PROGRAM FOR ERRORS 25

6-5
GET ALL THE INFORMATION
YOU CAN 220

6-6
GRACEFUL DEGRADATION 225

6-7
OVERALL PROGRAM
DEVELOPMENT 229

7-1

EFFICIENCY AND
MULTIDIMENSIONAL ARRAYS
253

8-1

A NOTE ON WRITING
READABLE MAIN PROGRAMS
281

8-2
EFFICIENCY AND PARAMETER
PASSING TECHNIQUES :ss

8-3
SIDE EFFECTS 294

8-4
GLOBAL VARIABLES VERSUS
FORMAL PARAMETERS 295

8-5
SIGNAL FLAGS 298

8-6
THE IMPORTANCE OF LIBRARY
ROUTINES 305

10-1
DIRECT ACCESS FILES 360

10-2
INTERACTIVE VERSUS
BATCH 1/0 370

10-3
A COMMENT ON SELECTING
DATA REPRESENTATIONS 350

10-4
THE SPACE-TIME TRADE-OFF
389

11-1
HOW BIG IS THE IDEAL
PROGRAM UNIT? <00

11-2
PROGRAMMING TEAMS -0/

STYLE CLINICS

11-3
BEWARE OF DEGRADATION
CAUSED BY CHANGE 4.2

11-4
BEWARE THE LONE WOLF! 416

Xi

CONTENTS

STYLE CLINICS ii

CHAPTER 1
AN INTRODUCTION TO
COMPUTER PROGRAMMING !

1.1 Introduction [/
1.2 The Steps Involved in Computer
Programming 2
1.3 The Problem Definition Phase 6
1.4 Examples 9
1.4.1 Table Look-Up 9
1.4.2 Statistical Comparisons 13
1.5 Conclusion /5

CHAPTER 2
ALGORITHMS 19

2.1 Introduction 19
2.2 Developing Algorithms 23
2.2.1 Example One—Table Look-Up 23
2.2.2 Example Two—A Better Table
Look-Up 38
2.2.3 Example Three—Averaging 44
2.2.4 Example Four—Words, Words,
Words 45
2.3 The Efficiency of Algorithms 50
2.4 Conclusion 58

CHAPTER 3
BASIC PASCAL DATA TYPES
AND DECLARATIONS 67

3.1 Introduction 67
3.2 The Concept of Data Types 68

vi

3.3 The Standard Scalar Data Types 68
3.3.1 Integers 68
3.3.2 Reals 70
3.3.3 Characters 72
3.3.4 Boolean 75
3.3.5 The Const Declaration 78
3.4 Additional Scalar Data Types 79
3.4.1 User-Defined Scalar Data Types
79
3.4.2 Scalar Subrange Data Types 83
3.5 Names in Pascal 84
3.6 Scalar Variables 86
3.7 Conclusion 90

CHAPTER 4
ELEMENTARY PASCAL
PROGRAMMING 95

4.1 Arithmetic Expressions 95

4.2 Use of Standard Functions /00

4.3 Boolean Expressions /00

4.4 The Assignment Statement 104

4.5 Input and Output 106
4.5.1 Read and Readln Statements 107
4.5.2 Reading in Text 114
4.5.3 Write and Writeln Statements 116

4.6 The Overall Structure of a Pascal Program
122

4.7 Examples of Programs /27

4 .8 Running a Program /29

CHAPTER 5
THE FLOW OF CONTROL /41

5.1 Introduction 141
5.2 The Compound Statement /42

5.3 Iterative Statements /43
5.3.1 The While Statement 143
5.3.2 The Repeat Statement 147
5.3.3 The For Statement 155
5.4 Conditional Statements /60
5.4.1 The If Then Construct 161
5.4.2 The If Then Else Construct 164
5.4.3 The Case Statement 170
5.5 Unconditional Branching 176
5.5.1 Statement Labels 176
5.5.2 The Goto Statement 177
5.6 Case Study—Root Finding /84

CHAPTER 6
RUNNING, DEBUGGING, AND
TESTING PROGRAMS 20/

6.1 Introduction 201
6.2 Processing the Program 20/
6.3 Debugging 204
6.3.1 Syntax Errors 206
6.3.2 Run-Time Errors 210
6.3.3 Logic Errors 213
6.4 Program Testing 220
6.5 Documentation and Maintenance 225
6.6 Conclusion 229

CHAPTER 7
STRUCTURED DATA TYPES—
ARRAYS 235

7.1 Introduction 235

7.2 Arrays 237

7.3 Multidimensional Arrays 243

7.4 Case Study—Encryption/Decryption 254

CHAPTER 8
FUNCTIONS AND PROCEDURES
267

8.1 Introduction 267
8.2 Functions 272
8.2.1 Function Declaration 272
8.2.2 Invoking a Function 273
8.3 Procedures 278

CONTENTS vii

8.4 Parameters 282

8.5 Block Structure 288

8.6 Functions and Procedures as Parameters
295

8.7 Recursion 299

8.8 External Subprograms 303

8.9 Case Study—Payrolls 305

CHAPTER 9

MORE STRUCTURED DATA
TYPES—RECORDS AND SETS
321

9.1 Introduction 327

9.2 Records 321
9.2.1 Simple Record Structures 321
9.2.2 Hierarchical Record Structures

326

9.2.3 Record Variants 330

9.3 Sets 332

9.4 Case Study—The Game of Life 340

CHAPTER 10

MORE STRUCTURED DATA
TYPES—FILES AND POINTERS
359

10.1 Files 359
10.1.1 Introduction 359
10.1.2 Creating and Using Files 361
10.1.3 Textfiles 366

10.2 Pointers 371

10.3 Case Study—Matrix Representations
380

CHAPTER 11
PROGRAM DESIGN METHODS
395

11.1 Introduction 395

11.2 Top-Down Modular Programming 397

11.3 Case Study 401

11.4 The Ultimate Measure of Computer
Programs 412 .

11.5 Conclusion 415

viii CONTENTS

APPENDIX A
SYNTAX OF THE PASCAL
LANGUAGE 43

APPENDIX B
STANDARDIZED PASCAL
IDENTIFIERS 435

APPENDIX C
CHARACTER SETS 439

BIBLIOGRAPHY 44/

SELECTED ANSWERS TO
EXERCISES 443

INDEX 463

Chapter 1

AN INTRODUCTION

TO COMPUTER
PROGRAMMING

14 INTRODUCTION

This book is about programming. However, that statement is not as simple as it may
first seem. What we mean when we use that term, and what others mean, may be
quite different. What we imply by the term computer programming is ‘‘the entire
series of steps involved in solving a problem on a computer.”” Too often, however,
the word programming has been used as a synonym for the word coding—the process
of writing statements in some existing computer language. Classes that have purported
to teach computer programming have frequently been nothing more than long litanies
of syntactic do’s and dont’s for some specific language. The worst part of this approach
is that it tends to reinforce the mistaken idea that the best technique for solving
problems on a computer is to take a pencil and a piece of paper, begin writing a
program, and keep writing until you are done. You then hope that you have produced
a valid solution. Nothing could be further from the truth. An enormous amount of
preparatory work must precede the actual coding of any potential solution. This prep-
aration involves steps such as defining exactly what is wanted, clearing up any am-
biguities or uncertainties in the statement of the problem, deciding how to solve it,
and roughing out the outline of the solution in some convenient notation. In fact, if
this preparatory work has been done well, the coding phase, which seems the most
important to many people, becomes relatively straightforward and uncreative. It be-
comes simply the mechanical translation of the solution for a problem into grammat-
ically correct statements of some particular language.

In addition, just as we must spend much time and effort before we code, we still
have much to do after we have finished coding. We must then grapple with the
problems of detecting and correcting errors, polishing the documentation, and testing,
validating, and maintaining the program.

2 AN INTRODUCTION TO COMPUTER PROGRAMMING

The point we are trying to make is that computer programming is an extremely
complex task made up of many individual phases, all of which are important and all
of which contribute to the solution of a problem. Do not confuse the concept of
programming with any single phase (e.g., coding) to the exclusion of all others. We
hope this explains why the first complete Pascal! program does not appear until the
end of Chapter 4. When constructing your own programs, the Pascal coding should
be preceded by a great deal of preparatory work clarifying, organizing, structuring,
and representing your solution. Failing to understand this principle is the first and
greatest mistake you can make when learning computer programming.

1.2 THE STEPS INVOLVED IN COMPUTER PROGRAMMING

In the introduction to this chapter we stressed that programming involves many steps.
Let us be a little more specific and describe the actual steps involved.

1. Defining the Problem. The inclusion of this step seems trivial. It is obvious
that we must know exactly what we want to do before we can begin to do
it. But this ‘“‘obvious’” phase is too often overlooked or omitted by program-
mers who begin their work on problems fraught with ambiguities and uncer-
tainties. A clear understanding of exactly what is needed is absolutely necessary
for creating a workable solution. The task of defining the problem will be
discussed in the remaining sections of this chapter.

2. Outlining the Solution. Except for the simplest of problems, a program will
not be composed of a single task but of many interrelated tasks. For example,
a computerized payroll system would most certainly not be viewed as a single
program. Instead, it will probably contain several program units that validate
input data, sort and merge files, compute and print paychecks, print output
reports and error logs, and keep year-to-date information. On large projects
that involve a number of programs and programmers, it becomes extremely
important to specify both the responsibilities of each task and how these
individual tasks interrelate and interact. This is to ensure that the pieces being
developed separately are designed in the context of the whole.

Of necessity, the early programs in this textbook are short and simple
and composed of single tasks. For these programs the outlining phase can
probably be neglected without severe complications. However, they should
be viewed as ‘‘toys’’ being used for teaching purposes only. In later chapters
we will be devoting a great deal of time to program development, program
structure, and the management of large, real-world programming projects
composed of many separate modules.

'Pascal is not an acronym and is therefore not written out in capital letters. The language was
named in honor of the French mathematician and religious fanatic Blaise Pascal (1623—1667).

1.2 THE STEPS INVOLVED IN COMPUTER PROGRAMMING 3

Selecting and Representing Algorithms. We have now specified the various
tasks and subtasks required to solve our problem. For each task we know
what information we will provide and what results we want to produce. But
we have not yet specified how the program is to accomplish its stated purpose.
An algorithm is the specific method used to solve a problem. The algorithm
may be one already developed and published in the literature or one of our
own creation and design. For reasons that we will discuss later, it is not a
good idea to begin immediately coding the informal specifications of an
algorithm directly into some existing programming language. Instead, it is
advantageous to describe the details of the proposed solution in an algorithmic
representation that is independent of any computer language or machine. In
Chapter 2 we will discuss algorithms and their development. In addition, we
will describe in detail one specific method of representing algorithms.

Coding. Only after unambiguously defining the problem, organizing a solu-
tion, and sketching out the step-by-step details of the algorithm can we con-
sider beginning to code.

Your choice of which computer language to use will probably be dictated
by three considerations.

1. The nature of the problem.
2. The programming languages available on your computer.
3. The dictates and limitations of your particular computer installation.

Some programming languages are general purpose; others are very specific
for certain classes of problems. Some languages are very widely available;
others can be run only on a very few computers. Figure 1-1 lists a few of
the more common programming languages that you may encounter.

In this textbook we will employ the language called Pascal. It is a very
elegant language, complex enough to introduce important concepts in com-
puter programming but simple enough to be a good teaching tool in a course
in computer programming. Chapters 3to 5 and 7 to 10 will describe the
correct use of the Pascal language. However, our concern is not merely to
teach you how to use Pascal correctly but how to use it well. We will devote
a great deal of effort to developing a set of guidelines to aid you in writing
‘‘good’’ programs. These guidelines, taken together, constitute a program-
ming style and will be presented both in the text and in numerous Style Clinics

throughout the book.

Debugging. The novice programmer quickly learns that a problem is far *
solved once the program has been coded and run. We must still locac and
correct all the inevitable errors. This is a time-consuming and often agonizing
task. Section 6.3 provides some tips and guidelines to make debugging more
manageable and less painful.

4 AN INTRODUCTION TO COMPUTER PROGRAMMING

Language

FORTRAN

ALGOL

COBOL

LISP

SNOBOL

BASIC

PL/1

APL

Pascal

Ada

Approximate
Date of
Introduction

1957

1960

1960

1961

1962

1965

1965

1967

1971

1980

General Application Areas

Numerically oriented language. Most applicable to
scientific, mathematical, and statistical problem
areas. Very widely used and very widely available.

Also a numerically oriented language but with new
language features. Widely used in Europe.

The most widely used business-oriented computer
language.

Special-purpose language developed primarily for
list processing and symbolic manipulation. Widely
used in the area of artificial intelligence.

Special-purpose language used primarily for
character string processing. This includes
applications such as text editors, language
processors, and bibliographic work.

A simple interactive programming language widely
used to teach programming in high schools and
colleges.

An extremely complex, general-purpose language
designed to incorporate the numeric capabilities of
FORTRAN, the business capabilities of COBOL,
and many other features into a single language.

An operator-oriented interactive language that
introduced a wide range of new mathematical
operations that are built directly into the language.

A general-purpose language designed specifically to
teach the concepts of computer programming and
allow the efficient implementation of large
programs.

A new systems implementation language designed
and built for the Department of Defense.

Figure 1-1. Survey of some widely used computer languages.

6. Testing and Validation. Getting results from a program is not enough. We
must guarantee that they are the correct results. Furthermore, we must try to
convince ourselves that the program will, indeed, produce correct results in

4.2 THE STEPS INVOLVED IN COMPUTER PROGRAMMING 5

all cases, even those that have not been explicitly tested. Section 6.4 discusses
the testing and validating of computer programs.

7. Documenting. The documentation of a program is a continual process. The
program specifications from step 1, the algorithmic representation from step
3, and the program itself from step 4 can all be considered part of the
documentation of a program. However, after successfully completing the
program, we must ensure that our documentation is complete and in a fin-
ished, usable form. This includes both technical documentation for the pro-
grammers who may be working with and modifying the completed program
and user-level documentation for the users of the program. Section 6.5 con-
tains guidelines and standards for both levels of documentation.

8. Program Maintenance. As you will be discovering, this textbook is con-
cerned with effective communication between persons, not just communi-
cation between a person and a computer. This will be evident from our
treatment of topics such as program clarity, program readability, and docu-
mentation. This concern is caused by the fact that programs are not static
entities. They frequently become outdated as errors are discovered, new prob-
lems need to be solved, or new equipment becomes available. Programs
written weeks, months, or even years ago will frequently need to be reviewed,
understood, and then modified by someone else. Unless we are careful to
document what we have done and write our programs clearly, systematically,
and legibly, this step can be frustrating or even impossible. Even if we always
maintain our own programs we may find that time has dimmed our memories
and that we require the same high-quality documentation as anyone else.
Because the best possible documentation is simply a clearly written, well-
organized, and well-structured program, we can in a sense say that this entire
textbook is devoted to facilitating the continuing task of program mainte-
nance.

Finally, we should stress that the programming process just described is not as
linear as these eight steps may lead you to believe. Most of these steps overlap each
other; for example, documentation will be written continually during program devel-
opment. Many of these steps will have to be repeated; for example, as debugging
uncovers errors, we will go back to recode portions of our program or to rethink the
solution. The point of this discussion was simply to show that programming is a
complex job. It is easy to become a good coder; reading this textbook and learning
the rules of Pascal should accomplish that. Your goal should be a higher one: to
become a good programmer, someone who understands and can manage the entire
spectrum of programming responsibilities. However, in this fuller sense of the word,
programming cannot be passively taught but must be actively learned through practice
and experience. When accomplished, however, it is a much more creative and re-
warding experience.

