Michael Metcalf

Effective
FORTRAN 77

Michael Metcalf

CERN, Geneva, Switzerland

CLARENDON PRESS - OXFORD
1985

Oxford University Press, Walton Street, Oxford OX2 6DP
London New York Toronto

Delhi Bombay Calcutta Madras Karachi

Kuala Lumpur Singapore Hong Kong Tokyo

Nairobi Dar es Salaam Cape Town

Melbourne Auckland

and associated companies in

Beirut Berlin Ibadan Mexico City Nicosia

OXFORD is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

© Michael Metcalf 1985

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of Oxford University Press

British Library Cataloguing in Publication Data

Metcalf, Michael
Effective FORTRAN 77.
1. FORTRAN (Computer program language)
2. Microcomputer—Programming
I Title
001.6424 QA76.73.F25
ISBN 0-19-853709-3

Library of Congress Cataloguing in Publication Data

Metcalf, Michael.
Effective FORTRAN 77.

Bibliography: p.
Includes index.
1. FORTRAN (Computer program language) I. Title.
QA76.73.F25M478 1985 001.64°24 84-28522
ISBN 0-19-853709-3

Printed in Great Britain by
St Edmundsbury Press Ltd
Bury St Edmunds, Suffolk

Effective
FORTRAN 77

PREFACE

FORTRAN 77 is now established as the dominant version of
this programming language, relegating FORTRAN 66 to the position
of a computing relic. The introduction of the new standard in the
late 1970s led to the publication of a spate of excellent text books,
but these are usually intended for beginners — those who have no
experience, either in FORTRAN or in programming as such. This
means that more experienced FORTRAN programmers are often left
to their own devices, as there are very few texts which enable them
to revise and develop their skills. At the same time, there are very
many programmers who begin their training in BASIC or in a
teaching language such as PASCAL, and are confronted with
FORTRAN only later when they embark on their careers in research
or industry.

The purpose of this book is to provide a complete but concise
review of the FORTRAN 77 programming language, to serve both as
a reference for the intermediate or advanced programmer, and as a
means whereby programmers in other languages can rapidly acquire
a knowledge of FORTRAN 77, without becoming bogged down in
expanses of explanatory text more suitable for absolute beginners.
The book should similarly be useful to FORTRAN 66 programmers
wishing to convert to the new standard, and to those beginners who
may prefer a faster approach to the topic. However, the book goes
beyond a bare exposition of the language, presenting other material
which helps in an understanding of its history and development, as
well as giving detailed advice on how FORTRAN should be used
wisely within the boundaries of its inherent limitations. Since
FORTRAN, the first high-level programming language, is a far from
perfect tool, it is even more important that it be used carefully,
lacking as it does much of the built-in protection contained in more
recent languages.

vi PREFACE

Chapter 1 gives a brief introduction to computers and a short
review of FORTRAN's relatively long and successful history, as well
as indicating likely developments in the future. The following six
chapters are devoted to a complete description of the language. They
present the version defined by the 1978 ANSI standard, the reader
being taken step-by-step through each of its features, which are
explained in sufficient but not excessive detail.

At a time when the interchange of software is becoming ever
more important and computer systems ever more varied, it is
essential to ensure that programs written and tested on one system
will run with little or no change on another. Chapter 8 provides a
list of recommendations which should help in the production of
portable code. Writing portable code from the outset can often save
costly re-programming at a later stage, and is a technique which
needs to be absorbed when learning the language itself.

The topics of style and good programming practice are further
developed in Chapter 9, and the question of program design is
tackled in Chapter 10, which shows how the principles of good
program design can be applied in the context of FORTRAN
programming.

One of FORTRAN’s prime advantages has always been its
emphasis on efficient object program execution, and some advice on
how this might be achieved is given in Chapter 11. As modern
computers become more powerful, the problems they help to solve
become more complex, and it remains vital to ensure that programs
remain efficient, even though computer hardware is ever cheaper.

The final chapter, 12, deals briefly with the topics of program
testing and documentation, two areas neglected in many texts, but
ones which are important in program development and maintenance.

FORTRAN has had a long and successful history and, in spite
of the development of new languages, it still remains the most
widely used in large-scale scientific computation. This book does not
set out to demonstrate that it is a perfect tool for that purpose, but
rather tries to ensure that it is used to the best possible effect in
those areas in which it still has no obvious contender.

ACKNOWLEDGEMENTS

A book such as this contains a great deal of detailed information
which requires extensive and careful checking. I have been greatly
helped in this task by several friends and colleagues, and I am par-
ticularly grateful to J. M. Gerard and R. Matthews of CERN and
to J. D. Wilson of Leicester University for their critical comments
on drafts of the text. The responsibility for any remaining errors or
omissions is entirely my own.

Much of the advice in the latter half of the book has been col-
lected from diverse sources, and I acknowledge particularly the work
of Mme. F. Vapne of the Electricite de France, which provided the
basis of Chapters 8 and 9. I thank also the University of Leicester
for permission to reproduce Appendix B.

It is a pleasure to thank the CERN management, and especially
P. Zanella, for encouraging me to undertake this work, and for
providing the necessary resources for its realisation.

My final thanks go to A. Berglund and D. Stungo for their
helpful cooperation in the preparation of the final camera-ready
copy.

CONTENTS

PREFACE
ACKNOWLEDGEMENTS
1. INTRODUCING FORTRAN
1.1 Computer Hardware
1.2 Computer Software
1.3 How FORTRAN Began
1.4 FORTRAN's Present Status
1.5 The Future of FORTRAN

2. LANGUAGE ELEMENTS

2.1 Introduction

2.2 Character Set

2.3 Source Form

2.4 Comment Lines

2.5 Constants

2.6 Symbolic Names
2.7 Variables

2.8 Arrays

2.9 Character Substrings

2.10 Summary

3. EXPRESSIONS AND ASSIGNMENTS
3.1 Introduction
3.2 Arithmetic Expressions
33 Arithmetic Assignment

>

CONTENTS

34
3.5
3.6
3.7

Logical Expressions and Assignments
Character Expressions and Assignments
Relational Expressions

Summary

CONTROL STATEMENTS

4.1
4.2
4.3
4.4
4.5

Introduction
Branches

IF Statements
DO-loops
Summary

SPECIFICATION STATEMENTS

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Introduction

Type Statements
PARAMETER Statement
DIMENSION Statement
EQUIVALENCE Statement
DATA Statement
Summary

PROGRAM UNITS

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Introduction

Main Program
Subroutines
COMMON Blocks
SAVE Statement
BLOCK DATA
Functions

Statement Functions
Procedures as Arguments
ENTRY Statement
Order of Statements
Summary

INPUT-OUTPUT

7.1
7.2
7.3
7.4
7.5
7.6

Introduction

Formatted 1/0

Edit Descriptors
Unformatted 170

File Control Statements
Direct Access Files

31
32
34
35

37
37
37
40
45
50

54
54
55
57
59
60
63
66

68
68
69
70
79
82
84
85
88
89
92
94
95

97
97
98
111
120
120
122

10.

11.

12.

7.7 170 Status Statements

7.8 Summary

PORTABILITY

8.1 Introduction

8.2 Language Elements

8.3 Expressions and Assignments
8.4 Control Statements

8.5 Specification Statements

8.6 Program Units

8.7 Input/Output

8.8 Summary

FORTRAN STYLE

9.1 Introduction

9.2 Language Elements

9.3 Expressions and Assignments.
9.4 Control Structures

9.5 Specification Statements

9.6 Program Units

9.7 Input/Output

9.8 Future FORTRAN

9.9 Summary

DESIGN OF FORTRAN PROGRAMS
10.1 Software Engineering

10.2 Program Design

10.3 Good Programming Practice
10.4 Summary

PROGRAM EFFICIENCY

11.1 Preliminaries

11.2 DO-loops

11.3 General Techniques

11.4 Summary

TESTING AND DOCUMENTATION

12.1
12.2
12.3
12.4
12.5

Introduction

Initial Module Testing
Initial Program Testing
Debugging

Program Documentation

CONTENTS

xi

124
132

134
134
136
138
140
141
142
144
145

147
147
148
150
151
154
155
159
160
161

162
162
164
169
176

177
177
179
184
192

193
193
194
198
201
203

xii CONTENTS

12.6 Summary

APPENDICES

A: INTRINSIC FUNCTIONS
B: FORTRAN STATEMENTS
BIBLIOGRAPHY

SUBJECT INDEX

207

209

218

225

226

1 INTRODUCING FORTRAN

This book is concerned with the FORTRAN programming language.
It sets out not only to offer a complete and relatively concise
description of the whole language, but seeks also to emphasise those
language features which are considered to be consistent with good
programming practice. Features which are less desirable are given less
prominence. The language description occupies Chapters 2 to 7,
which are written in such a way that simple programs can already
be coded after the first three of these chapters have been read. Suc-
cessively more complex programs can be written as the information
in each subsequent chapter is absorbed. Chapter 7 covers the whole
of the input/output features in a manner which confines the more
advanced features to its end, so that the reader can approach this
more difficult area feature by feature, but always with a useful sub-
set behind him.

The remainder of the book is concerned with the effective use
of the language. It sets out to provide guidance which goes beyond
the coding of syntactically correct programs, describing how pro-
grams can also be made portable, neat, efficient, well documented
and tested. Although these chapters may often read as long lists of
do’s and don’ts, they provide the material necessary to progress
from a mere formal command of the language to the ability to
wield it as a well mastered tool.

This present chapter has the task of setting the scene for those
which follow. For those who are unfamiliar with any notions of
computers or computing, it contains a very brief and highly simpli-
fied description of the basic hardware elements out of which com-
puters are constructed, and goes on to present some basic concepts
of computer programs and programming. Since this book is aimed
at readers who typically already have some familiarity with program-
ming, these two sections may be skipped by such people without

2 EFFECTIVE FORTRAN 77

loss.

The remaining three sections of this introductory chapter pres-
ent the FORTRAN language as such. FORTRAN has evolved con-
siderably since it was first introduced about thirty years ago, and
these sections describe its history, current status and likely future,
this last section being inevitably somewhat speculative.

1. Computer Hardware

A large computer is one of the most complex and ingenious pieces
of machinery ever devised by man. Fortunately, the typical program-
mer has to understand rather little about its inner workings, and can
often write small-scale programs without great concern for what goes
on behind the scenes, although most large-scale applications require
more detailed knowledge of the capabilities and limitations of the
hardware.

1.1 Storage

Computing is concerned with the manipulation or processing of data.
These data may be lists of numbers, school records, company
accounts, airline schedules, or any other kind of information suitable
for automatic processing. In order to have the data available in a
form in which it may be readily accessed, every computer has a
main memory or store. A store is normally divided into words, each
word containing one item of information, as shown in Fig. 1. The
number of words in a store varies from several thousand on very
small microprocessors, to several hundred million on large
super-computers.

Each word in the store is composed of more elementary units
known as bits. A bit can have only one of two values, 0 or 1,
often represented physically by the on or off state of a minute elec-
tronic switch. If a word contains m bits, then the word itself can be
in any of 2M different states. The actual meaning assigned to a par-
ticular pattern of 0’s and 1’s in a word depends on the individual
computer model, but almost all computers store the positive integers,
0, 1, 2, 3 etc. in a way whereby each bit which is set to 1 in the
word represents a value which is 2M-D where n is the position of
the bit within the word counting from the right. The number 14 can
thus be represented by the bit string 1110, ie. the sum of 2e-n
26-D and 2¢-Y or pictorially:

o[o]JoJoofofofofo]oofof f111]0]

INTRODUCING FORTRAN 3

bit 2 bit1

R

- TP word 1
m bit Word 2
posmons Word 3
in word
Word 4
s %
Word N

Fig. 1 A computer store

Many present day computers have stores with 32 bits to a word,
with an intermediate division of the word into four groups of eight
contiguous bits. Such a group of eight bits is known as a byte. A
byte has 28 or 256 different states, and may be used to store, for
instance, the different representations of the characters in a character
set of upper and lower case letters, numbers, punctuation marks efc.

Access to words in main memory is fast, but the memory itself
is expensive. Since the amount of data a computer is expected to
process often far exceeds the capacity of the main memory to store
it, there is usually another level of storage which has a much larger
capacity, but is less expensive per unit of storage. This is known as
a backing store, and on most modern computer systems consists of
various types of rotating disc packs. This type of storage has the
drawback that the access to the data is slower than for main mem-
ory.

A further level of storage is provided by magnetic tapes, which
have to be physically mounted onto units before they can be written
or read, but which are very cheap, and each can hold quantities of
data exceeding thousands of millions of bits.

We thus see that there is a hierarchy of storage, from small,
fast but expensive main memory, to large, slow but cheap dismoun-
table tapes. A further level on many computers is a small,

4 EFFECTIVE FORTRAN 77

high-speed memory known as a cache memory which acts as a
buffer between the rest of the storage system and the device which
exploits it, the central processing unit.

1.2 Central processing unit

The heart of a computer is its central processing unit (CPU). This is
the device which performs the actual processing of the data. For
instance, it may take the contents of two specified locations in
memory, add them together and return the result to a third location.
To be able to perform this operation, the operands will be fetched
from memory and placed in high-speed registers in the CPU. These
are a small store of usually a few dozen words inside the CPU
itself, to which access is extremely fast, allowing the CPU to operate
on their contents at its full speed, without having to wait for oper-
ands to be fetched from main memory, once they have been placed
in the registers.

The main part of the CPU is the arithmetic and logic unit (or
units), which is a device capable of performing various operations on
operands held in the registers. These operations are the familiar
arithmetic operations of add, multiply, subtract and divide, as well
as others which, for example, allow the bits of a word to be shifted
in position to the left or right, to be complemented, masked or to
be logically combined with the bits of another word. A CPU and its
registers are shown diagrammatically in Fig. 2, and a fuller descrip-
tion of several actual models can be found in Metcalf (1982).

instructions

Instruction decoder

Arithmetic and

from ‘opercnds
store Logical Unit

Registers

Fig. 2 A central processing unit

INTRODUCING FORTRAN 5
1.3 Instructions

A CPU has not only to be supplied with data, but also requires the
necessary orders on how the data are to be manipulated. These
orders are contained in instructions which consist of coded informa-
tion about which operands are to be operated on, and by which
operators. The instructions control directly the movement of data
words between the main memory and the registers in the CPU.

The instructions themselves are stored just like data words in the
main memory. In many computers, a special register points to the
location in memory which contains the next instruction to be exe-
cuted. When the current instruction has been carried out, the next
instruction word is fetched from memory into a special part of the
CPU, where it is first decoded, and the orders it contains then exe-
cuted. This is also shown in Fig. 2. Since at the level of the storage
an instruction word is treated just like a data word, it is perfectly
possible for the CPU to modify instructions stored in memory.

1.4 Access to a computer

Nowadays there are two principal ways in which computers are used
and accessed. In the first, the computer is relatively small, and sits
on a desk top or in a corner of an office, and is operated interac-
tively via a visual display unit or terminal. This consists of a key-
board which may be used to send commands to the computer, and
a screen on which the computer displays requests for commands and
the responses to those requests. The operation of the terminal may
be under direct control of the CPU of the computer to which it is
connected, or be controlled indirectly by other hardware.

The second method of use is once again via a terminal, but in
this case the computer to which it is connected is located remotely,
possibly in the same building but perhaps many kilometers away.
Here, the computer in question will be larger, and there may be as
many as several hundred people using it simultaneously. The connec-
tion between the terminals and the large computer will often be
under control of smaller computers. In many cases, a number of
large computers will be linked together in a network, or be con-
nected vig telephone lines, and it will be possible for a user sitting
at his terminal to connect from one computer to another, and even
to use a computer situated in another country or continent.

6 EFFECTIVE FORTRAN 77
2. Computer Software

The computer hardware which has just been outlined operates under
the control of sequences of instructions. These instructions are stored
in memory, and fetched by the CPU for decoding and execution. A
long sequence of instructions might be only partially stored in main
memory, the remainder being kept in the backing store until needed.
A sequence of instructions to perform a defined task is known as a
program. A collection of programs to control the operation of the
hardware of a computer and of the application programs submitted
by users is known as an operating system.

Programs are written in a precisely defined code, or program-
ming language. These exist in various forms. Those languages which
require a detailed knowledge of the hardware of a specific computer
are known as low-level languages. Others written in a more abstract
way requiring little or no such knowledge are called high-level lan-
guages. FORTRAN is such a language. It is written in a manner
akin to mathematical formulae, and is translated into the instructions
required to drive the CPU by another program which is part of the
operating system and known as a compiler. The compiler reads the
FORTRAN source code, checks that the syntax is correct, i.e. that it
conforms to the rules of FORTRAN grammar, and generates the
instructions in the form of a so-called object code. In order for this
code to be executed, it must first be correctly placed in the comput-
er’s memory and the execution initiated. This is the task of other
programs, which are also part of the operating system and known as
loaders and linkage-editors.

Programs are collectively known as computer software. A given
piece of hardware — or computer — can in principle be operated
and used by many different suites of software. In practice, very few
different operating systems exist for a given type of computer, as it
requires a large investment in manpower and hence money to write
such a system. Application programs to solve a small problem, on
the other hand, may often be written in an afternoon by one per-
son, although very large application programs are also written, com-
parable in size and complexity to an operating system. In this book,
we shall be concerned with just one language used to write applica-
tion programs varying in size from a few lines to hundreds of thou-
sands of lines.

