MARSHALL

TI99/4A

HE

#\RRY

GET MORE

&

&

&
i
|

TP3
MY 8563135

E8563135

Get More From
The TI99/4A

Garry Marshall

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1983
Reprinted 1983

Copyright © 1983 Garry Marshall
British Library Cataloguing in Publication Data

Marshall, Garry
Get more from the TI99/4A.

1. Texas TI199/4A (Computer)
I. Title
001.6404 QA76.8.T/

ISBN 0-246-12281-1

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Preface

This book is about getting more from the Texas Instruments
TI199/4A computer. The way of doing this that it advocates is to
learn to program the TI99/4A effectively. Now, the User’s
Reference Guide that is supplied with the computer gives a rather
good treatment of the features of TI BASIC and makes an excellent
source of reference. It is not so good at explaining how to write and
develop programs, however. This book aims to supplement the
User’s Reference Guide by showing how to develop interesting
programs. By the same token, it avoids repeating material from the
Guide, except for a little of the introductory material that must be
included to make the book self-contained.

After a broad introduction to the features of TI BASIC in
Chapter 1, the book moves on to developing short programs for
colour graphics and sound effects in Chapter 2. In Chapter 3, it
concentrates more on graphics and the production of effective
screen displays. In the second and third chapters most of the features
of TI BASIC that are needed in later chapters are introduced. At the
same time utility routines are developed for performing tasks that
cannot be achieved directly in TI BASIC. Chapter 4 provides a
discussion on how to develop lengthy programs in a systematic way
and on how to document them to make them readable. Then
Chapters 5 to 8 are devoted to the development of some fairly long
programs for interesting applications, including a Space Invader
game and a simulation. All the programs presented in these chapters
are written to take advantage of the particular strengths of the
TI99/4A. The final chapter examines how the computer can be
expanded, with particular emphasis on the programming languages
that are available as alternatives to TI BASIC. Infact, the computer
can be expanded with an impressive array of programs and
peripherals.

The book does not cover every aspect of TI BASIC. It does,

viii Preface % 8 ; % ;% %3 i

however, try to provide some motivation for each of the topics that it
does cover. I hope that this approach will encourage the reader to
use the TI99/4A with confidence, to experiment with its capabilities
and, above all, to enjoy using it.

Finally, I should like to thank Richard Miles of Granada
Publishing for his continual encouragement and for arranging for
me to have the use of a TI99/4A with many programs and
peripherals prior to and during the writing of this book. I would

also like to thank Texas Instruments for makinga T199/4A available
for me.

Garry Marshall

8563135
Contents

Preface

Introduction To TI BASIC
Graphics And Sound
Screen Displays

Program Development
Tiles, Tiling And A Puzzle
Writing A Game

Writing A Simple Database
Writing A Simulation
Expanding The TI99/4A
Appendix 1: The ASCII Code
Appendix 2: Binary And Hexadecimal Notation

O 00 3 N U A W N —

Appendix 3: Logic And Logical Expressions
Appendix 4: Notes And Further Reading
Glossary

Index

Vil

10
24
40
47
59
68
75
89
98
100
102
104
106
111

8563135
Chapter One

Introduction To Tl BASIC

The version of BASIC that is built into the Texas Instruments
TI99/4A is known as TI BASIC. It can always be accessed by
pressing the 1 key when the computer’s master selection list is
displayed. Programming the computer in TI BASIC is one way to
get it to do exactly what you want it to do. Whether you want it to
display brilliant colour graphics, to play music, to play a game or to
store and rmanipulate information, you can make it perform to your
wishes by programming it.

The purpose of this introductory chapter is to introduce the
features of TI BASIC so that we can see what capabilities it
possesses and how they can be used as the building blocks for
constructing programs. Later, in Chapters 2 and 3, we shall write
some quite short programs and, in Chapters 6 to 8, we shall have
progressed to the stage of developing substantial ones. Before
proceeding to write programs of any length however, we shall pause
in Chapter 4 to consider how they can be developed in a systematic
way. Adopting a systematic approach to program development not
only makes it possible for the reader to get the most from the
programs themselves but also helps to ensure that the programs
work properly!

The programs that are presented are intended to do more than
demonstrate how to program the computer. They are all written
with an eye to showing off the capabilities of the TI99/4A. Thus, its
colour graphics and sound production capabilities are prominently
featured. The programs also illustrate the kinds of uses to which
computers can be put. In this way they should provide the reader
with a fund of ideas for what to do with the computer either by
enhancing the programs presented in the book or by usingthemasa
launching pad for further, personal, developments.

2 GetMore From The TI99/4A

The Tl BASIC environment

TI BASIC provides a number of commands that make it easy to use.
They are typed in directly and are obeyed as soon as the ENTER key
is pressed. Tasks typical of those for which commands are provided
are the entering, examining and altering of programs. The following
Table 1.1 lists the more useful commands and gives summaries of
their purposes.

Table I.1. Some of the commands of TI BASIC.

Command Purpose of command
BYE To leave TI BASIC and return to the master title screen.
EDIT To edit existing program lines. By typing EDIT followed

by a line number, the program line with that number can
be amended by replacing, inserting or deleting characters.

LIST To list the program currently stored in the computer. A
part of a program can also be listed by giving the line
numbers of the first and last lines in the part as, for
example, in LIST 200-300.

NEW To erase the program currently stored in the computer
and to prepare it generally for the entry of a new program.
NUMBER To generate the line numbers for program lines auto-

matically. When issued by itself the line numbers start at
100 and increase in steps of 10. However, the command
can specify the starting number and the step as in
NUMBER 200, 50 which gives an initial line number of
200 and then the numbers 250, 300 and so on.

OLD To copy a program that is stored on cassette, or some
other permanent storage medium, into the computer’s
memory. The command causes the instructions for operat-
ing the cassette recorder to be generated and displayed

automatically.

RUN To run the program that is currently stored in the
computer.

SAVE To save the program that is currently stored in the compu-

ter by copying it onto cassette or some other permanent
storage medium. As with OLD, the instructions for
operating the cassette recorder are generated and dis-
played automatically.

Introduction To Tl BASIC 3

The features of Tl| BASIC

In essence, what most computer programs do is to accept and store
information, to manipulate the information in some way, and to
present the results of this to the person using the program. This
patternis evident in an arcade game program such as Space Invaders
where the person playing the game provides the inputs by pressing
keys as are appropriate for moving his missile base and for firing
missiles. The inputs are manipulated by, first, determining which
command they represent and then taking the appropriate action
such as moving the missile launcher to the left. The result of this is
presented to the user by an appropriate modification to the display
screen. As an example from the use of computers in business, a stock
control program gives a direct reflection of the pattern. Changes in
stock are typically provided to the stock control program as inputs.
This information is manipulated so that a correct representation of
the current stock position is stored in the computer, and this can be
displayed to show the state of the stock at any time. When a
computer runs a program to enable it to control another item of
electronic equipment, the program accepts as input signals from the
equipment it is controlling. It then processes these signals to
determine what action it needs to take, and then produces as output
the control signals that will cause the necessary actions to be taken.
Since most computer programs conform to this pattern, all
computer languages, and TI BASIC in particular, must have
features with which a programmer can direct the computer to accept
information, store it, manipulate it, and display the results. Some of
these actions can be achieved with commands, and we shall
demonstrate this before moving on to show them being done by
simple programs.

We can store a word such as ‘Houston’ in the memory of the
computer by making an assignment. This is done by enclosing the
word in quotation marks and assigning it to a variable. To do this we
must give the name of the variable. A variable name should begin
with a letter, it can be from one to fifteen characters long, and the
other characters can be letters or numbers. (Actually, a few other
characters can be placed at the beginning of or within a variable
name, but we shall not do so in this book.) As far as possible,
variables will be given names in this book which indicate the purpose
to which they are being put. This helps to make programs more
readable and easy to understand. Finally, if a word, rather than a
number, is to be assigned to a variable, then the name of the variable

4 Get More From The TIS9/4A

must end with a dollar sign. This is so the computer can tell when it is
dealing with words and when it is handling numbers. Thus, one way
to store our word is with the assignment command:

CITY$ = “HOUSTON”

When it is executed it causes the string of seven characters in the
word to be stored in a part of the computer’s memory which can be
referred to as CITYS.

Numbers can be stored using similar assignments. For example,
we can store the numbers five and six with the two assignments:

FIVE =5
SIX =16

Again, these numbers are stored in parts of the computer’s memory
that can be referenced by the names of the respective variables to
which they are assigned.

With two numbers stored in the computer, we can write
commands which cause these numbers to be processed and to store
the results. For example, we can find and store the sum and the
difference of the two numbers with

SUM = SIX + FIVE
and
DIFFERENCE = SIX — FIVE

When one of these commands is executed what happens is that the
computer takes the part of the command to the right of the equals
sign, which is written as it would be in ordinary arithmetic, and uses
it to find a value. Thus, when finding the sum, it looks up the values
assigned to the variables FIVE and SIX, and adds these values
together. When a value has been found as a result of dealing with the
right-hand side of an assignment, it is assigned to the variable whose
name is given on the left-hand side. So, when the last two commands
have been executed we have 11 stored under SUM and one stored
under DIFFERENCE.

When these commands are obeyed there is no external evidence
that anything has occurred, since they have caused events to happen
only inside the computer, in its memory. However, to find out what
has happened there we can use the PRINT command or, to equal
effect, the DISPLAY command. Either of the commands

PRINT CITYS

Introduction To TI BASIC 5

and
DISPLAY CITYS

will cause whatever is stored under the variable name CITYS to be
displayed on the screen. In this case we shall see

HOUSTON

To see what is stored in the variables FIVE and SIX and the results
that were stored in SUM and DIFFERENCE we can give the
command

PRINT FIVE, SIX, SUM, DIFFERENCE
or

DISPLAY FIVE, SIX, SUM, DIFFERENCE
They will both cause the display

d 6
11 1

In this way, with simple assignment commands and commands
involving PRINT or DISPLAY we can cause the computer to store
and manipulate information, and to display the results. Each
command is obeyed at once, and so to achieve a chain of actions we
have to enter the successive commands one after another following
the completion of the prior commands.

We turn now to writing programs to tell the computer what to do,
rather than giving it commands to do one thing at a time. A program
is a sequence of instructions that tells the computer how to perform a
task when the sequence is obeyed. The computer must srore the
program first. When it is stored completely, it can be run using the
RUN command. When a command is preceded by a number the
computer recognises it as a program line and proceeds to store it as
part of the current program. The number is usually referred to as a
line number and the combination of number and command as a
program line or statement. The computer uses the line numbers to
order the program lines, constructing a program by placing the lines
in increasing order of their line numbers.

A simple program to store two numbers, find their sum and
difference, and display the result can be written based on previously
given commands.

6 GetMore From The TI99/4A
It is

100 FIVE =5

110 SIX =6

120 SUM = SIX + FIVE

130 DIFFERENCE = SIX — FIVE

140 DISPLAY FIVE, SIX, SUM, DIFFERENCE
150 END

Remember that just typing in the program as it is written
automatically causes it to be stored. It can be listed by issuing the
LIST command and run as often as you like by issuing the RUN
command repeatedly.

This program is of strictly limited value since it always finds the
sum and difference of the same two numbers. We can generalise it so
that it can do the same for any two numbers that we might care to
give the program when it is running by using the INPUT statement.
When an INPUT statement is executed it causes the computer to
display a question mark as a prompt and then to wait until an entry
is typed and ENTER is pressed, when it assigns the entered value to
the variable mentioned in the statement. Thus, execution of the
statement

100 INPUT FIVE

will cause the entered value to be assigned to the variable named
FIVE. The facility also exists for providing your own prompt rather
than the question mark, and well-designed prompts make a program
much easier to use. If we would like the prompt

FIRST NUMBER?

to appear when we should enter the first number, we can write the
INPUT statement as

100 INPUT “FIRST NUMBER?” : FIVE

Note the use of the colon, which is compulsory. A program to accept
any two numbers and find their sum and difference can now be
written as:

100 INPUT “FIRST NUMBER?” : NUMBERI

110 INPUT “SECOND NUMBER?” : NUMBER?2

120 SUM = NUMBERI + NUMBER?2

130 DIFFERENCE = NUMBERI — NUMBER2

140 DISPLAY NUMBERI1,NUMBER2, SUM, DIFFERENCE
150 END

Introduction To T/ BASIC 7

A typical dialogue produced by running this program is:

FIRST NUMBER? 10
SECOND NUMBER? 2
10 2

12 8

Another way of providing data to a program isto use the READ and
DATA statements. With these, the data (whether numbers or
words) is given in the DATA statement or statements. The first
READ statement that is executed in a program causes the first item
of data to be read, the second READ statement reads the second
item and so on. Clearly, since the data items must be explicitly listed
in a DATA statement they must be known at the time the program is
written. If this is not the case, then the use of an INPUT statement is
probably a more appropriate way of providing data. The use of the
READ and DATA statements is illustrated by the next program.

1001 =1

110 READ WORDS$

120 DISPLAY “WORD NUMBER ”; LIS ™ WORDS$
1301=1+1

140 GOTO 110

150 DATA ABILENE, GALVESTON, LAREDO, AUSTIN
160 END

Note that since the data consists of words it is read into an
appropriately named variable, WORDS. The GOTO statement is
introduced in line 140. The effect of executing

GOTO 110

is to cause line 110 to be executed next. When this program is run it
produces the display

WORD NUMBER 1 IS ABILENE
WORD NUMBER 2 IS GALVESTON
WORD NUMBER 3 IS LAREDO
WORD NUMBER 4 IS AUSTIN

*DATA ERROR IN 110

The program reads and displays the items.of data, but it also gives an
error. What has happened is that the GOTO statement in line 140
has created a loop that is executed for ever (unless an error occurs).
Every time line 140 is reached it sends the computer back t 1o line
110 again. However, the fifth time that the READ statement in line

8 Get More From The TI99/4A

110 is executed there is no data to read, for the DATA statement
contains only four items. This is the cause of the error.

One way to amend the program is with the use of the conditional
statement. This has the form:

IF condition THEN line number 1 ELSE line number 2

When executed, the condition is tested. If it is found to be true then
the statement having its line number given by line number 1 is done
next, otherwise that with the line number given by line number 2 is
done next. The statement can be abbreviated to

IF condition THEN line number 1

In this form, the condition is tested, and if it is true the statement
with the line number given by line number [is done next, otherwise
the next line after the conditional statement is executed.

The last program can be corrected if we include a special item of
data to indicate that it is the last item, and then use the conditional
statement to detect it and cause the program to end properly. The
resulting program is:

1001 =1

110 READ WORD$

120 IF WORD$ = “END” THEN 170 ELSE 130

130 DISPLAY “WORD NUMBER ”; [;* IS ”; WORD$

1401 =1+1

150 GOTO 110

160 DATA ABILENE, GALVESTON, LAREDO, AUSTIN,
END

170 END

The program will display only the first four data items and not the
last one which is only an end-marker and presumably not an item of
data as such for the program.

Since the program that gave the error is about reading and
displaying a word repeatedly, it could equally well be fixed using TI
BASIC’s facility for repetition. This involves the use of the FOR and
NEXT statements. Using them, an alternative version of the fixed
program is:

100 FORI=1TO 4

110 READ WORD$

120 DISPLAY “WORD NUMBER ”; [;* IS ”; WORD$
130 NEXT 1

Introduction To T BASIC 9

140 DATA ABILENE, GALVESTON, LAREDO, AUSTIN
150 END

The repetitions are achieved by repeating the statements between the
FOR and NEXT statements as often as directed by the FOR
statement. In this case the first repetition is done with I= 1, the next
with 1 increased by one to two, the next with I increased by one to
three and finally with 1 = 4. The general form of the FOR statement
is:

FOR variable = initial value TO final value STEP step

This gives the initial value to be assigned to the variable for the first
repetition, the final value for the last repetition and the step by which
the initial value is to be increased up to the final value for the
repetitions in between. If STEP is omitted, as it is in the last
program, it is taken to be one.
Finally, we will introduce TI BASIC’s CALL KEY statement. It
has the form:
CALL KEY (0, CODE, STATUS) /

/
{

Its purpose is to allow interactive entry of data to a programf With
its use a program can determine whether a key has been pressedand,
if so. which one. However, the program does not halt, as it does with
an INPUT statement, but proceeds immediately after executing
CALL KEY to the next statement as it would with any other
statement. When it has been executed, the value of STATUS
indicates whether or not a key has been pressed, and the value of
CODE gives the code for the character on the key that has been
pressed. The codes are explained in full in the next chapter.

Summary

This chapter provided an introduction to the facilities of TI BASIC.
First the commands it provides were described. Then the ways in
which data entry, storage, manipulation and display can be achieved
were explained. Input can be achieved with the INPUT, CALL
KEY. and READ and DATA statements. Assignments permit both
storage and manipulation. The PRINT and DISPLAY statements
can both be used to display results.

Chapter Two
Graphics And Sound

The strong points of the Texas computer include its graphics and
sound capabilities, and the ease with which graphics and sound
effects can be programmed. In this chapter we shall examine the
fundamental techniques for producing graphics displays and for
generating sounds.

Graphics

A program or text appears on the screen when letters and numbers
are positioned in the appropriate places. Letters and numbers are
represented when stored in the computer by their codes. To give one
example, the code for ‘A’ is 65. In fact, the computer uses the ASCII
code to represent the standard characters that can be entered from
the keyboard. The code is listed in Appendix 1. When the computer
is switched on the codes from 32 to 127 are automatically assigned to
the characters as shown there.

In the same way as positioning letters on the screen gives a
paragraph of text, so a picture can be displayed by placing graphics
characters on the screen. To illustrate this, the image shown in
Figure 2.1 can be formed by combining the small number of
graphics characters in Figure 2.2 in the way illustrated by Figure 2.3.

The computer itself does not provide any graphics characters.
However, it does provide the user with the capability to define his
own graphics characters. The codes from 128 to 159 have no
characters assigned to them, and they are there, in essence, for the
user to assign his own characters. Besides this, characters may be
reassigned to any of the codes from 32 to 127 within a program if this
should suit the user.

Every character that can be displayed on the screen occupies an
area that consists of eight rows each with eight dots along it called a

Graphics And Sound 11

Fig. 2.1. An image.

Fig. 2.2. Some graphics characters.

dot matrix. This is equally true whether the machine defines the
character automatically or you define it yourself. A character is
displayed in this area by (in monochrome terms) turning some of the
dots on and leaving others off. Expressing this rather more
appropriately in terms of colour, a character is displayed in colour
by making some of the dots one colour and the rest another colour.

