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SREFACE

This volume contains the notes of a session’ organized on October 2,3 and 4,1978
at the Departement of Mathematics of the University Paris 13,Centre Scientifique et
Polytechnique,Villetaneuse.

The aim of this session was to gather mathematicians and scientists of other
fields:chemistry,biology,physics and astrophysics,and to let them exchange information
and methods.

The common points to all the lectures are partial differential equations,non
linear phenamena,study of the dependence with respect to a parameter,and the methods
used are very diverse.

The lectures can be classified into three groups according to their relation
to applied science : papers belonging to the first cluster deal with a phenomenolo-
gical approach;in this case,a complete system of equations describing the experimen-
tal phenomenon is either too complicated or not entirely known and understood;there-
fore,a simpler system is studied which mimicks the behavior of the complete system,
and one expects qualitative results.Here belong the talks of J.Heyvaeerts,J.M.Lasry,
'M.Schatzman & P.Witomski ,of G.Iooss,of J.P.Kernewvez,G.Joly,D.Thomas & B.Bunow,and
of P.Ortoleva. . .

The second group is made of mathamatical and numerical studies of more conplete
modelizations:here,the model is better understood,and the study is more precise,so
that it may give quantitative results;this group contains the contributions of
° C.M. Brauner & B.Nicolaenko,of C.Guillopé,of G.Iocoss & R.Lozi,and of J.Mossino.

Though the papers of the third group are not directly concerned with natural
phenaomena, they develop theoretical tools and an understanding of non-linear pheno-
mena,which are intended to meet the needs and preoccupations of the applied scientists.
We include here the papers of H.Berestycki & P.L.Lions,of C.Bolley,M.Barnsley,.
F.Mignot,F.Murat & J.P.Puel,of J.C.Saut,and of D.Serre.

Striking observational data were brought by M.Dupeyrat who showed a beautiful
dynamic periodic chemical phenomenon with a movie film.

We added a paper of J.P.Chollet and M.Lesieur.They show how the nonlinearity
of the Navier-Stokes equation can create turbulence and give a phenomenological
model that fits with the Kolmogorov law.

We thank all the participants for their actiwve presence and interesting
contributions
' C.Bardos,J.M.Lasry,M.Schatzman.

+Suppor.ted by the University Paris 13,and the Centre National de la Recherche
Scientifique,A.T.P. Mathématiques pour les Sciences de 1'Ingénieur.
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PARAMETER DEPENDENCE OF SOLUTIONS OF CLASSES OF
QUASI-LINEAR ELLIPTIC AND PARABOLIC DIFFERENTIAL EQUATIONS

by
M.F. Barnsley

Service de Physique théorique

C.E.N. Saclay
B.P. n°2

91190 Gif s/Yvette

ABSTRACT

Earlier work, on the dependence of solutions of certain classes
of quasi-linear elliptic and parabolic differential equations on
embedded parameters, is extended and generalized. In particular, generic
classes of linearly perturbed, and inhomogeneously perturbed, quasi-linear
elliptic and parabolic boundary values problems whose stable positive
solutions are Laplace transforms of positive measures, are identified.
For a particulér class of such problems the conjecture that the solution
is a Stieltjes transform of a positive measure is explored. It is shown
that low order rational fraction Padé approximants provide useful bounds,

independently of whether or not the conjecture itself is true.



1. INTRODUCTION
[1,2]

We consider some extensions and generalizations of earlier work concerning
the dependence of solutions of certain quasi-linear elliptic and parabolic differen-
tial equations on an external parameter. Our interest is in those cases where

the solution, as a function of the external parameters, can be expressed as a trans-—
form of a positive measure. In such cases one can use moment theory to yield
convergent sequences of upper and lower bounds on the solution throughout the range
of the parameter, as described inlz]. To construct the bounds one needs to know
either an initial sequence of terms in a perturbation expansion of the solution

in the parameter (in some cases these can be obtained by solving a set of linear
equations), or a set of experimental points corresponding to different values of

the parameter. The latter possibility is attractive because the resulting bounds

are to some extent "model-independent" as described in[l].

In IT and III we describe two generic situations which, in the elliptic case,
have positive stable solutions which are Laplace transforms of positive measures.
As such, they are amenable to analysis using generalized Padé approximants.

In IV we consider a class of nonlinearly perturbed elliptic boundary value
problems for which it is conjectured that the positive stable solution is a Stieltjes
transform of a positive measure in the perturbation parameter. In certain cases
this conjecture has been established, and then rational fraction Padé approximants
provide not only convergent sequences of bounds on the solution but also they yield
bounds on the associated turning point. It is shown that, for low order Padé
approximants, similar results pertain in general, whether on not the conjecture

itself is true.

II. LINEARLY PERTURBED NONLINEAR EQUATIONS

We consider quasi-linear differential equations of the form

Lo + F(¢) + App = £ in D,J

B = 0 on 9D (2.1

Here D denotes a bounded domain of real N-space RN with boundary 3D and closure D.
We assume that 9D belongs to the class CZ+u, where o € (0,1) is fixed. L is the

uniformly elliptic differential operator

N 2 N
3o (x) 9 (x)
L =- X a, .x) ===+ I (x) /= + a(x)$(x) (2.2)
1, 5m1 1,] Bxiaxj k=1 ax axk



2+0, ,= 1+ =
€C o‘(D), a, €C 0L(D), and a € Ca(D) where we assume

with real coefficients a; 5
’ =
that,for all x = (xl,xz,...,xN) €ED

a(x) 20 (2.3)

The matrix (aij) is supposed to be uniformly positive definite over D. B is either

of the boundary operators

Bo
B¢

¢(x) on 3D, (2.4)
B(x)¢(x) + 3d(x)/9v on 3D, (2.5)

1+o

where B(x) € C (9D) and satisfies

B(x) 20 for all x € 3D . (2.6)

3/9v denotes the outward conormal derivative. In the case where (2.5) applies we
assume that a(x) and B(x) do not both vanish identically. The functions p and f
in (2.1) belong to Ca(ﬁ) and satisfy
p(x) >0, and £f(x) 20 for all x € D, (2.7)

with £ # 0.

The real valued function F(¢) = F(x,9) may depend explicitly on both x € D
and ¢. We suppose that it has the following properties
(i) F(0) - £ < 0 for all x €D,
(ii) There exists a constant C > 0 such that

F(C) - £ 20 for all x €D.
(iii) F(¢) is C ® in ¢ for all ¢ € [0,C], each of its derivatives in this range

belonging to Ca(ﬁ) in X, and such that uniformly in x € Dand n = 2535byis 5

F<F™ () <0 for all ¢ € [0,C]
for some constant F > 0.
(iv) F(l)(¢) >0 for all x € D and ¢ € [0,C]. This means that the linear operator
ixléfz(ﬁ) corresponding to L + F(])(¢) together with the boundary condition in (2.1)
has strictly positive least eigenvalue for all smooth ¢(x) € [0,C].
The conditions above on (L,B) are such that are such that the MaxZimum Principle[3]
and the Positivity Lemma[4 apply. Moreover, the smoothness conditions of F(¢) mean

that Amann's Theorem[S]

, on the existence of solutions via sandwiching between
upper and lower solutions, applies to (2.1). The key condition on F(¢) which ensures
the establishment of the Laplace transform property (Proposition 1.2) is (iii).
Proposition (2.1). The problem (2.1) with A > 0 possesses exactly one solution

¢ € CZ+a(B) which satisfies 0 < ¢(x) < C for all x € D.

Proof : The existence of at least one solution in-the desired range is provided

by conditions (i) and (ii), upon application of Amann's Theorem. Zero is a lower
solution while the constant C is an upper solution, for all A > O.

To establish uniqueness let ¢I and ¢2 be two solutions. Then Taylor's Theorem



with remainder provides
- - gD -
F(d)) = F(9,) = F" " (¢5)(, - ¢,) (2.8)
for some ¢3 lying between ¢, and ¢,, so that ¢3 € [0,C]. Hence

L+ + 51, - 9 =0 inD
B(¢l = ¢2) =0 omn 9D ’

(2.9)

and condition (iv) now yields ¢l = ¢2. Q.E.D.
We will denote the solution referred to above by ¢()X). In order to examine

its analytic nature let )\0 > 0 be held fixed, let A € C be given, and set

0=A- )\O (2.10)
Then we will investigate the formal series
(=]
= 1 n
¥ = ¥IX,,0l = HEO -1 Y [2ole (2.11)

where the p-independent functions wn = wn[)\ol are supposed to satisfy the set of
equations obtained by equating the coefficients of the different powers of p which

occur in the formal expansion of

LY + F(Y) + ()\o+p)p‘l’ = f in D,
BY = 0 on 93D,

(2.12)

and where wo is constrained by

0<y,=2C, for all x € D (2.13)
The equations to be satisfiéd by the wn's are found to be

Lyy* F) + Agpyy = £ in D (2.14.0)
Byy=0 on D, Y, € [o,c]

[L+F(])(w0)+)\0p]¢l +pYy = 0 in D

BY, = 0 on 3D (2.14.1)

[L+F(l)(1p0) +Agply, + F(z)opo)wf +2py, =0 inD,

Bw2= 0 on 9D, (2.14.2)

[L+ F(])(IIJO) + )\Op]wn +nopy 3

T
+ T F® (wo){ I Clnghy - -
m=2 0<kl<k2<' . .<km_]<n
(2.14.n)

v _ e NV }=
(ke ~kgg) TRy k) Ty

Blj)n=0 on 98D, n=2,3,4,... )

n—-1 k. -1 ky-1
= -1 2 5
where C(n’kl""’km—l) (km_])(km )(k )



The existence of a unique set of functions {wn € C2+a(ﬁ) :n=0,1,2,...}
satisfying the above set of equations is readily seen. By Proposition 1, (2.14.0)
possesses a unique solution

Uy = 00y € ¥ (2.15)

One now proceeds inductively for n=1,2,3,... The nth

equation is linear in wn’
involving it only in the term [L-#F(l)(wo)-+kop]wn, and the inhomogeneous part is
a function of (wo, wl,...,wn_l) which, through inductive hypothesis, belongs to
Ca(ﬁ). Thus, since (L+F (wo) +X0p,B) is positive and has smooth coefficients,

5 ¢ < +0o,= s : :
the nth equation has a unique solution wn € C2 a(D), which completes the induction.
One sees, moreover, with the aid of the Positivity Lemma and by proceeding inducti-

vely using (iii), that

D"y 20  forall x€D (2.16)

Having shown that the formal series (2.11) is well defined, our next objective
is to show that it has a finite radius of converge R(XO) and that for |p| < R(Xo)
it converges to a solution of (2.1). This solution is then readily identified to be
¢(A). To achieve these ends we consider the algebraic functional equation, defining

£(p),

{00\ + 0B + FIE - Fe O~ {o0ryp + Figy - F (2.17)
Here
%y = MaX{Ma§ {¢0<x)} ; 1} s P = Max{p(x)} , (2.18)
x€ED x€D

and ('J()\O)_1 = Mag{e(x)} > 0 where 6 € C2+a(5) is the unique positive solution of
x€D

"

{L+F“)(¢0) + xop}e 1 for all x € D,

B = 0 on 9D

(2.19)

The motivation behind (2.17) will become clear shortly.

Equation (2.17) possesses the solution & = $0 when p = 0. Using standard analy-
tical techniques we find that this solution £(p) exists and is regular in a
neighbourhood of p = 0, say for |p| < R(ko) where R(AO) > 0. Indeed, with the aid
of Bernstein's theorem 6 one finds that £(p) is a regular analytic function

throughout Re p > —R(AO), being expressible in the form

E(p) = J eXP{-(R()\O) + )y} du(y) (2.20)
0
where u(y) is a bounded monotone nondecreasing function over the range 0 < u < o,

Writing the Taylor series expansion of &£(p) about p = 0 as
(o]
I T
E(p) = Eo ar &P s lol < RQAY (2.21)



we find that the E;n's are given recursively by

&y = o (2.22.0)
o(X +pE =0,
(A&, *+ P&y (2.22.1)
~ 2 e
0(Ag)E, ~ FE +2pE =0, (2.22.2)
and
. R n
o(A))E +npE . - F I { E Clnsk,,...k__J)E
0""n n-l m=2 ‘0<k, <k, <...<k_  <n ! L G
1 72 m—1
& _ O P } =0 (2.22.n)
. km_z) (ky—k )7k,
for n=2,3,4...
We now show that
0< D"y < (-1)“15n for all x€D, n=0,1,2,... (2.23)

These inequalities are clearly true for n=0. Now consider (2.14.1). An upper
solution is provided by zero, and a lower solution is provided by —§$Oe(x) since
L+ 7 () + A p1(58,0) + po, = -phy + Pb, < 0 in D
0 0 0 0 0 0 -

AR (2.24)
B(-p¢09) =0 on 3D

Hence 0 < (—l)w] < +§$09 < 5$0/°(>‘o) ='(-1)E] which proves (2.23) when n=1. Now
assume that (2.23) is true for all n=0,1,2,...,K, and let us first suppose K is odd.
Then it is readily seen that zero is a lower solution for (2.14. K+ 1), while

an upper solution is

K+1
-(K+1)PE, + F I { z CK+ 13k, 5.,k _)E _
{ Ko m2 lock <ko<...<k <K+l L Lol LS Rt D
1 2 m-1
12 _ o oBpp }6=$ , (2.25)
Gy = k)" S,k K, K41
Since replacing wK+1 by wK+] in the left-hand-side of (2.14. K+1) provides
o K+1
{(K+ DY -pE) + { z C(R* T3k s k)
m=2 “0<k,<k,<...<k _ <K+l (2.26)

7 (m)

Fe,. cer B B+ F™ @y N I, }

[ (R+1-k__)) (k,~k )7k, oY1 -k ) (ky~k ) Pk,
which is positive via the inductive hypothesis together with assumption (iii).

Moreover BJ) 0 on 9D. Hence

K+1 "

0= ¢K+l < ¢K+l < E1(+1 (2.27)



The induction is completed after similar treatment of the case K even, and the
relations (2.23) are proved.

In particular, the series (2.21) being absolutely convergent for |p| < R(ko)
provides, on using (2.23), that W[Ao,p] is absolutely convergent for
lo| < R(AO) uniformly for x € D. We will use the same notation W[Xo,p] to denote
its sum, where it converges.

th

Let WN[AO,p] denote the N partial sum of Y[A.,p] and let p be fixed such

that |p| < R(Ao). Then we show that W[Xo,p] € CZ+a(ﬁ) and satisfies the differential
[11]

equation (2.12) by applying the Compactness Theorem . Provided with the conditions
(a) through (d) which follow, the desired result is assured. We already know that

(a) the sequence of functions {WN[XO,D]};;O is uniformly convergent to W[Xo,p] :

(b) WN[AO,Q] € C2+a(5) for each N; (c) BWN[AO,p]= 0 on 9D for each N; and we

need only to prove that (d) the sequence of functions {LWN[AO,O]} is uniformly
convergent to f - ApW[AO,p]— F(W[Ao,p]).since F and its derivatives are continuous

it suffices to prove that

[L-»F(')(%)nop](wM - ¥) >0 uniformly in D,

as N tends to infinity, with M > N. But for N > 2,

M
1) L1
[L+F" 7(d.) + A pl(¥, - ¥ )| = TR AT
o) ¥ AgplCy - ¥ ‘2=N+1 A [ -1
L
] i
+ I F () z CRsk ek IV, R /SN )
n=2 0 loak <,k <n ! LR T A P
N L
L . -
< ¥ (D |D|Q'fr [-lp Eg *F L { L C(R3K, penusk )
2=N+1 : m=2 “0<k <k <...<k  <§ ! =
1727 e
E(a- £ - <o B ot 4B }] =o0) I DYpelte, L 5.3
Bl )Gy =k o) 772 (ky=k ) Ok 0,k Ie]™ &5 o3 (2.29)

where we have used the inequalities (2.23) and the definitive equations (2.22.n)
(d) is now proved because the last expression in (2.29) tends to zero as N tends
to infinity, uniformly for M > N, and independently of x €D, because the series

® n 1 5
I p or En is absolutely convergent for |p| < R(1.).
n=0 ) Y

The identification of W[Ao,p] with ¢(A) = ¢(Xo-+p) for AO and p real with
lp| < R(Ao) follows immediately from the fact that W[Ao,p] is positive in some
neighbourhood of Xo, together with the uniqueness part of proposition (2.1).
We have in particular that ¢()) is analytic and regular in some neighbourhood

of the real axis 0 < A £ «, and that
n dn¢

at
Thus, Bernstein's Theorem[6]comp1etes the proof of the following proposition.

-1 20 for all A € [0,x] (2.30)



Proposition (2.2). The function ¢(\) defined by Proposition (2.1) can be analytically

continued througolgout Re A 2 0, where it can be expressed in the form

o) = I e
0

s du,(s), (2.31)

the function u (s) being uniformly bounded and monotone non-decreasing for
0 < s <o, for all x€D. $()) satisfies (2.1) at least throughout some open
neighbourhood of the real axis 0 < A < o,

A similar result also applies in the case of the associated parabolic differential
equation obtained by the adjunction of 3/9t to L, and adjoining an initial positive

boundary condition to B, as in[2].

3. INHOMOGENEOUSLY PERTURBED NON LINEAR EQUATIONS

We consider equations of the form

[L-Apld + G($) = Yf in D} 3.1
B¢ = 0 on 9D

Everything here is defined as in §II except that now A€ (- + ©) and Y is the
parameter of interest. The real valued function G(¢) = G(x,$) is assumed to have

the following properties :

(i) Min {Gu) /u} » = as u > ®
x€ED
(ii) G(0) =0
(iii) G(u) and all of its derivatives exist and belong to Ca(ﬁ) for all u€[0,=).
(iv) [G(u)/u](]) exists and is > 0 for all u€[0,=), all x € D.

(v) 3 a constant ¢ such that G > (_])nG(n) (u) 20 for all u€f0,»),
x€D, n=2,3,...

Using Bernstein's Theorem we find that the most general form of G is
oo

G(x,9) = AG)SZ + BGG + I {exp{-Y¢} - l}dpx(Y) (3.2)
0

where A(x) > 0 for all x € D, and px(‘y) is a bounded monotone non-decreasing function
on 0 £ vy < », for each x€D.
Proposition 3.1. For each Y 2 0 and A€ (—=,+x) the problem (3.1) possesses exactly

2+

one non negative solution ¢ €C” (D). This solution is regular in Y and can be

analytically continued throughout Rey > 0, where it satisfies a representation

of the form o
[ -
g—$ 1= e YS 41 (s) , for each fized x, A (3.2)
X, A
0



where 1 <s bounded monotone nondecreasing funetion on 0 £ 8 < ® . The continued
Xy A
solution satisfied (3.1) for all Y in some neighbourhood of 10,%).
We omit the proof of this proposition as it follows somewhat similar lines to
the demonstrations en §2. A key point is that the operator ([L-Xpi-G(])(¢[Y])],B)

has strictly positive least eigenvalue for all y > 0.

4. PADE APPROXIMANTS AND THE PROBLEM [L-Apl¢ +Yq ¢ = f

We consider the y-dependence of the positive stable solution ¢[y] of the problem

N .
Ly + yg¢ = £  in D, } Gy
Bé =0 on 0oD; N=2,3,...

where qECa(B), q(x) > 0 for all x€1-), and all other quantities are defined as in
§2. In particular, we are interested in the location of the turning point Y*, which
corresponds to the first singularity in ¢[y] on the real axis as y goes towards
minus infinity starting from zero ¢[y] is a positive stable solution of (4.1) for
all y > Y*- -

We are also interested in the possibility of using classical rational fraction
Padé approximants (P.A.'s) to provide upper and lower bounds on ¢[y] for all y > Y*,
starting from the Taylor series expansion of ¢[y] about y = 0 which we write

o
oyl = = v o (4.2)
n=0
Over and above the practical utility of such bounds, the motivation here is the

conjecture that ¢[y]l is a Stieltjes transform of positive measure, namely

..]/-Y*
*
oly] = J % for all YEC-(~=,y ] , (hed)
0

where U(s) is a bounded monotone nondecreasing function on -I/Y* < s < » , This
conjecture was shown indeed to be true in the case N=2, in dimension < 5, when
L=-A, q=1, and f is sufficiently smooth,[S].

We begin by saying why a representation of the form (4.1) is suggested in the
first place. In the case where the boundary condition in (4.1) is replaced by
39¢/3v = 0 on 9D, and a, q, and f, are constants we have that ¢[y] is itself a

constant, being the positive solution of the algebraic equation

N
aplyl + yqolyl” - £ =0 (4.4)
The solution of the latter which is regular around Y = 0 is expressible in the form

(4.3) with

a-D N
Y*='[ £EN | ®-D ° Ki=5
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(8]

see , example 1. In view of the close relationship which often exists between
solutions of uniform elliptic equations and the analogous algebraic equations, the
conjecture (4.3) is suggested.

Let us now examine some consequences of (4.3) when we suppose that it 7s true
[e.g. N=2]. The first and perhaps most important consequence is that the [M/M] and
[(M-1)/M] sequences of PA.'s, constructed from initial sets of coefficients occuring

in the expansion (4.2), provide convergent bounds on ¢[y] according to

MMl 2 [+ /M+1) 1202 ¢0vT 2002 M/ (+1)] > [(M-1) /M]
for all y > 0,

(4.6)
olyl2...2[(+e1)/Q+1)] > [M/(1+1)] > [M/M] > [ (M-1)/M]
for Y* <y<0; M=1,2,3,...
The [R/S] P.A. is defined as follows :
PR(Y) B By + By 4.4 PRYR 4.7)

[rR/S] =

QS(Y) 1+q1Y + .0t qus

where the (R+S+1) unknowns, the p's and q's, are determined by the requirement

R+S
Q ('Y)/ I — Y% ) - P.(Y) = terms of order .YR+S+1 and higher. (4.8)
S \n=0 n! n R
Certain subtle modifications of this definition are needed in special cases, but
[9]

the above suffices in general. For full details see . There also exist complemen-
tary P.A.'s, denoted [R/S]c, whose bounding properties complement those in (4.6).
These are defined similarly to the above except that the polynomial occuring in
the denominator is required to have a zero at a point ;* > Y*, while the number of

[10]

agreements demanded in (4.8) is decreased by one see . An elementary pair of

approximants is
[0/11 = 6o/C1=Y$,/8g) and [0/11° = o/ 1=y/Y") (4.9)

and these display in particular the bounds

[0/11 < ¢ly] < [0/11° for §* <y <0 (4.10)

provided that (4.3) is true.
We note that the ¢n's needed for the construction of the P.A.'s can be obtained

by successive solution of the set of linear equations

L¢0= f in D,

B¢0= 0 on 9D; (4.11.0)

\
Lo, + ad5= 0 in D,
B¢l= 0 on 9D;

(4.11.1)



