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PREFACE

During the last 15 or 20 years much progress has been made in the
theory of non-self-adjoint operators on Hilbert and Banach spaces.
The present volume is intended to provide an introduction to the
subject.

The first four chapters are devoted to standard material on
linear functional analysis. However, whenever possible a unified
approach is used, and this is the case, for example, for the three
basic theorems of linear functional analysis which are treated
consequences of a unique theorem. Chapter 5 is concerned with the
general spectral representation of operators on Hilbert spaces and
depends on the Banach algebra theory developed in Chapter 4.

Chapter 6 is concerned with the basic notion of this book:
the numerical range. First this is considered for Hilbert spaces
and next for Banach spaces. Various classes of operators connected
with the numerical range are also discussed.

The classes of nonnormal operators have a long history, and the
problem of deciding when an operator is normal (also hermitian,
unitary) forms the content of Chapters 7 and 8.

As is well known, the class of hermitian operators has many
important applications in various branches of mathematics and
physics; thus related classes of operators for which many proper-
ties of hermitian operators are preserved are of great interest.

Chapter 9 gives an account of results involving such classes as
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well as some applications (for example, a simple proof of an
interpolation theorem of Lions-Peetre).

In Chapter 10 the famous invariant subspace problem is dis-
cussed and some structure theorems are presented.

The Weyl spectrum of an operator is discussed in Chapter 11,
as well as some applications. The elements of the von Neumann
algebras are also given.

Chapter 12 is concerned with an important and useful notion:
analytic and quasi-analytic vectors; also some applications are
given. 1In Chapter 13 the Banach space version of the famous
Schwarz theorem from complex function theory is presented. 1In
Chapter 14 results on maximum theorems for operator-valued func-
tions are given.

In the last chapter, I present some ergodic theorems for
classes of operators containing the quasi-compact operators. The
results presented are connected with the operator theoretic treat-
ment of Markov processes as given by Kakutani-Yosida and refined
by many authors. I have tried to indicate the origin of the vari-
ous results, and the references (which in turn contain references
to many earlier results) may be used to obtain further information.
When I make no ascription, I am not claiming originality.

A part of this book has its origin in a course given by the
author at the Centro Linceo Interdisciplinare di Scienze Mate-
matiche e loro Applicazioni of the Accademia Nazionale dei Lincei
(Rome, Italy).

For interesting and helpful conversations I am indebted to
many friends. For discussions and constant encouragement I am

indebted to Professor G. KSthe.

Vasile I. Istritescu



PREFACE

1 PRELIMINARIES: SET THEORY AND GENERAL TOPOLOGY

ey
Sw -

The Algebra of Sets

Partially Ordered Sets

Topology and Topological Spaces
Baire's Theorem

2 BANACH SPACES

2.1

2.10

213
2.14
2..1.5
2.16
2,17

Linear Spaces

Linear Independence

Sets in Linear Spaces

Classes of Spaces: Isomorphic Spaces,
Quotient Spaces, and Complementary Spaces
Seminorms and Norms on Linear Spaces
Linear Topological Spaces

Banach Spaces

Linear Operators on Banach Spaces
Uniformly Convex and Rotund Banach Spaces:
Some Generalizations

The Hahn-Banach Extension Theorem
Extension Theorems for Complex Banach Spaces
Three Basic Theorems of Linear Analysis
Convergence in Banach Spaces

The Adjoint of an Operator

The Spectrum of an Operator

The Local Spectrum of an Operator
Analytic Representation of the Dual of
Some Banach Spaces

Measures of Noncompactness and Classes of
Mappings on Banach Spaces

vii

CONTENTS

25
27
29
30
32

35
39
43
45
56
63
65
70

76

84



viii

3 HILBERT SPACES

Inner Products on Linear Spaces

Orthonormal Bases and the Bessel Inequality
Separable Hilbert Spaces: Gram-Schmidt
Orthogonalization Method

Orthogonal Subspaces of a Hilbert Space

The Dual of a Hilbert Space

Classes of Bounded Linear Operators on
Hilbert Spaces

4 BANACH ALGEBRAS

4.1
4.2

Definitions and Some Examples

The Spectrum of an Element in a Banach
Algebra with Unit

Representation Theorems for Commutative
Banach Algebras

Structure Theorems for Commutative

Banach Algebras

Representation Theorems for Noncommutative
Banach Algebras

5 SPECTRAL REPRESENTATION OF OPERATORS ON HILBERT SPACES

5.1,

5.2

Semispectral and Spectral Families of

Radon Measures

Measurability and Integrability with Respect
to Spectral Families

A Representation Theorem for L™

Spectral Decomposition of Some Classes

of Operators

Some Remarks on the Spectral Mapping Theorem
for Hermitian and Normal Operators

6 THE NUMERICAL RANGE

6l

The Numerical Range for Bounded Linear
Operators on Hilbert Spaces

The Numerical Range and the Spectrum

The Numerical Range and Its Closure

The Essential Numerical Range for Bounded
Linear Operators on Hilbert Spaces

The Maximal Numerical Range of a Bounded
Operator on a Hilbert Space

The Extreme Points of the Numerical Range
for Hyponormal Operators and (WN) Operators
The Numerical Range and Some Classes of
Operators

The Numerical Range and Tensor Products

Contents

109
109

119
125
126

129

142
142

147

151

154

167

174

174

179
181

188

191

200

200
206
214
217
219
221

223
224



Contents

The Numerical Range for Bounded Linear
Operators on Banach Spaces

The Exponential Function on the Set of All
Bounded Linear Operators on a Banach Space
The Numerical Radius, the Spectral Radius,
and the Norm of a Bounded Linear Operator
on a Banach Space

Hermitian and Normal Operators on Banach
Spaces

Normal Operators on Banach Spaces

Classes of Elements in Banach Algebras with
Unit: The Vidav-Palmer Theorem

Some Properties of Hermitian and Normal
Elements of a Banach Algebra

The Numerical Radius and the Iterates of
an Element

The Numerical Range of Elements of Locally
m-Convex Algebras

7 NONNORMAL CLASSES OF OPERATORS

Tl
d 2
73

N
N Ul

Classes of Nonnormal Operators

Spectral Sets and Dilations of Operators
Operators with G} Property and Some
Generalizations

Operators with Property Re o(T) = o (Re T)
The Class R;

Other Classes of Bounded Operators

8 CONDITIONS IMPLYING NORMALITY

8.1
8.2
8.3

Conditions Implying Hermitianity
Conditions Implying Unitarity
Conditions Implying Normality

9 SYMMETRIZABLE OPERATORS : GENERALIZATIONS AND
APPLICATIONS

9o,
9.2
9.3
9.4

9.5

Symmetrizable Operators on Hilbert Spaces
Symmetrizable Elements in Banach Algebras

Inner Products on Banach Spaces: Symmetrizable
Operators and Some Generalizations

Some Applications of Symmetrizable Operators
and Quasi-Normalizable Operators

Further Results on Symmetrizable Operators

on Hilbert Spaces

ix

226

233

236

238
244

246

255,

260

262

265
266
275

286
297
302
307

310

310
317
321

344

344
349

352

369

374



10

11

12

13

14

15

Contents

INVARIANT SUBSPACES AND SOME STRUCTURE THEOREMS 380
10.1 Invariant Subspaces: Some Existence Theorems 380
10.2 Reducing Invariant Subspaces 398
10.3 Some Structure Theorems 408
THE WEYL SPECTRUM OF AN OPERATOR 412
11.1 Preliminaries and Some General Results 412
11.2 Weyl's Theorem 420
11.3 Weyl's Theorem for Some Classes of Operators 426
11.4 The Weyl Spectrum of an Element in a

von Neumann Algebra 433
11.5 The von Neumann Theorem 439
ANALYTIC AND QUASI-ANALYTIC VECTORS 444
12.0 Introduction 444
12.1 Self-Adjoint Operators 446
12.2 Classes of Vectors for an Operator 452
12.3 Analytic and Quasi-Analytic Vectors and

Essentially Self-Adjoint Operators 455
12.4 Quasi-Analytic Vectors and Semigroups of

Operators 463
12.5 Analytic and Quasi-Analytic Elements in

Commutative Banach Algebras 466
SCHWARZ NORMS 468
13.1 Schwarz Norms 469
13.2 A New Class of Schwarz Norms 476
13.3 Schwarz Norms on Banach Spaces 478

MAXIMUM THEOREMS FOR OPERATOR-VALUED HOLOMORPHIC

FUNCTIONS 483
14.1 Holomorphic Functions 483
14.2 Subharmonic Functions 485
14.3 Maximum Theorems for the Norm 498
14.4 Maximum Theorems for the Spectral Radius

and for the Essential Spectral Radius 508
14.5 Maximum Theorems for Other Operator-valued

Holomorphic Functions 528
UNIFORM ERGODIC THEOREMS FOR SOME CLASSES OF OPERATORS 537
15.1 Classes of Operators 537

15.2 Applications to Markov Processes 545



Contents

APPENDIX. Cp CLASSES
REFERENCES
SYMBOL INDEX

SUBJECT INDEX

xi

549

553

573

575



Chapter 1

PRELIMINARIES: SET THEORY AND GENERAL TOPOLOGY

1.1 THE ALGEBRA OF SETS

In what follows we assume that the reader is familiar with the

notion of a set. We give several examples of sets.
1.1.1 EXAMPLE The letters of the English alphabet form a set.

1.1.2 EXAMPLE The rational numbers in the interval [0, 1] =

{x I 0 =< x =1} form a set.

1.1.3 EXAMPLE The numbers of the form 2n, where n is an integer,

also form a set.

We consider a set A as being given when we can identify its
elements; for example, the set E has the elements a, b, ¢, ...,

or, in brief,
E = {a; by €, swsl

Another way is to identify the elements of a set by a property P,

or in brief,
E = {a | a has the property P}

Generally speaking, we adhere to the standard notational con-
ventions: we denote by lowercase letters a, b, ¢, ... the elements
of a set E and we write this as a € E, b € E, c € E, ... . Sets
are denoted by uppercase letters A, B, C, ..., X, Y, Z and families

of sets by A, B, C, ... (script uppercase letters). We write @ for
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the empty set, and for any element a, {a} denotes the set which

has as an element only the element a.

1.1.4 DEFINITION Let A and B be two sets. We say that A is a
subset of B if for any a € A we have a € B. We write this as
A C B. If there exists an element b € B, b not in A, then we say

that A is a proper subset of B.
If an element a is not in a set A, we write this as a ¢ A.

1.1.5 DEFINITION If A and B are two sets, we say that A = B if
A C B and B € A; in the contrary case, we say that A and B are

distinct sets.

1.1.6 DEFINITION If A and B are two sets, then A U B denotes the
set of all elements which are in A or in B; A | B denotes the set

of all elements which are in A and in B.

The set A U B is called the union of the sets A and B; ANB

is called the intersection of the sets A and B.

1.1.7 REMARK similar definitions can be given for the case when

we have a family of sets, A = {A } for U A and N A .
a o€l a o a o

1.1.8 EXAMPLE 1If A = {1, 2, 3} and B = {2, 5}, then

aUB={1, 2, 3, 5} ANB-= {2}
If A= {1, 2} and B = {3, 5}, then
aUB={1, 2, 3, 5} ANB=g¢g

1.1.9 DEFINITION For any set A we note P(A), the family of all
subsets of A.

1.1.10 EXAMPLE For A = {2} we have
P@) = {g, {2}}

1.1.11 PROPOSITION 1If A, B, and C are sets, then the following
relations hold:

1. aUB=8BUna

2. AUA
3. aUg
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4. aU BUC) = (aUB) Uc
5. ACAUB
6. A C B if and only if AU B =B

1.1.12 REMARK The reader can prove similar properties for the
intersection; for example

1'. ANB=BNA

2'. ANA=1n

1.1.13 PROPOSITION 1If A, B, and C are arbitrary sets, then
AN (BUC =@NB U (anoc
AU BNGC =(@UB N (aUC

Proof. We prove only the first assertion; the second relation can
be proved in a similar way.
Let x € AN (BUC). Then x € A and x is also in B or in C.
Suppose, for example, that x € B. The case x € C is similar.
In this case x € Al B and thus x € (AN B) U (AN C). In this
way, ANl BUcC) c (aNB) U (aANC). Let us now suppose that x
is in (AN B) U (AN C) and for simplicity x is in A 1 B. 1In
this case it is clear that x is in (A UB) N (a U ¢). The propo-

sition is proved.

1.1.14 DEFINITION Two sets A and B are called disjoint if
ANB=g; if A is a family of sets such that for any sets A, B

in A we have A N B = @, we say that A has pairwise disjoint sets.

Suppose that we have a set T and we consider P(T). For any
A € P(T) we can define a new set, called the complement of A, by

the relation,

By = x| xemr, x ¢ A}

It is easy to see that the following properties hold:

4 CAUB = CA nc

2 = (@)
Cang = Ca U Gy

B

Also it is clear that these relations hold for the case of

families of sets. Since the proof is easy we omit this.
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The set A A B (the symmetric difference of the sets A and B)
is defined by

AAB={x|xe€aUB, x¢an B

It is obvious that A A B = B A A.
If T is a given set, then in P(T) we have several types of
families of sets. Among these we mention two which are very useful

in measure theory: the ring of sets and the 0-ring (o-algebra).

1.1.15 DEFINITION A family of sets R ¢ P(T) is called a ring of
sets if for any A and B in R the following sets are also in R:

AUB AN CB

1.1.16 DEFINITION A ring of sets B is called a o-algebra if

for any A € B,l%iAn is again an element of B.

1.2 PARTIALLY ORDERED SETS
Let A be a nonempty set.

1.2.1 DEFINITION A relation on A is a collection of ordered pairs

(x, y) of elements of A.

1.2.2 DEFINITION A partially ordered set is a nonempty set with
a relation denoted "=" such that the following properties hold:
l. If a<band b <c, then a < ¢ (transitivity).
2. a=a for all a € A (reflexivity).

3. If a=<band b<a, thena=> (antisymmetry) .

1.2.3 DEFINITION A totally ordered set is any partially ordered
set A (with the relation =) with the property that for any pair

a, b of elements of A, we have a = b or b < a.

1.2.4 EXAMPLE The set of all real numbers R is a totally ordered
set. The relation "<" is defined as follows: We say that two real
numbers are in the relation a < b if the difference b - a is a

positive number.

The set of all complex numbers is a partially ordered set.
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Here we have several possible ways to define the relation <;
for example, we can define the relation "<" as follows: Two com-

plex numbers zl and 22 are in the relation zl = z, if

zl < Re zz, where Re z is the real part of z.

If T is any set, then we can define in P(T) a relation in the

Re

following way: If A and B are elements of P(T), then we say that
A =B if A is a subset of B. In this case P(T) is a partially
ordered set. In this case we say also that we have an ordering by

inclusion.

1.2.5 DEFINITION 1If a is a partially ordered set and Al C A, then
an element a € A is said to be an upper bound for Al if a; = a for

all a, € Al.

The element & is called a least upper bound of Al

1. If & is an upper bound of Al'

2. If al is another upper bound of A then 4 = a,.

The least upper bound is denoted, genirally, by lui Al.
The element b € A is called a lower bound of Al if b = a; for
all al € Al and an element b € A is called the greatest lower bound
1. If b is a lower bound.
2. TIf b1 is another lower bound, then bl < b.

The greatest lower bound is denoted, generally, by glb Al.

1.2.6 DEFINITION An element x of a partially ordered set A is
called maximal if x < y implies y < x.

Similarly we can define the notion of minimal element.

1.2.7 DEFINITION A chain in a partially ordered set is any subset
C of A such that the relation order "<" of A, restricted to C,

gives that C with this relation is a totally ordered set.

One of the most important axioms in set theory is the axiom of
E. Zermelo and is called the axiom of choice. There exist several
equivalent formulations of this axiom and here we quote without
proof only two. First we define the notion of cartesian product.

For I, any set, we suppose that for each i € I there exists a set



6 Chapter 1

A,. The cartesian product HiEI Ai is the set of all functions f

defined on I such that,

f(i) = fi € Ai

for each i € I; fi is called the i coordinate of f.
Now we are ready to give the two formulations of the choice

axiom.

1.2.8 CHOICE AXIOM The cartesian product of any nonvoid family

of nonvoid sets is a nonvoid set.

1.2.9 ZORN'S LEMMA If A is a partially ordered set such that for
every chain there exists an upper bound, then A has a maximal

element.

In several sections of this book we apply these assertions;
we mention here the application in the proof of the Hahn-Banach

theorem.

1.3 TOPOLOGY AND TOPOLOGICAL SPACES

In analysis we use intensively the notion of convergence. For
example, we say that a sequence of complex numbers or real numbers
(or a sequence of real- or complex-valued functions) converge.
Also the notion of convergence is used to characterize certain
important classes of functions. For example, a function F:
[0, 1] » R is continuous if and only if for each s ¢ [0, 1] and
any s s, f(sn) -+ F(s).
These situations and others lead to an axiomatic treatment of
the notion of convergence, and one of the basic settings in which

this is best realized is in metric spaces.

1.3.1 DEFINITION A metric space (X, p) is a pair, where X is a
nonempty set and p is a real-valued function on X x X with the
following properties:

1. p(x, y) = 0 if and only if x = y

2. p(x, y) = ply, x) for all x,y € X



