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PREFACE

This book was written for the student and practicing engineer who wish to use
matrix methods of structural analysis to predict the static response of struc-
tures. The text is introductory, emphasizes the stiffness method, and contains
the fundamentals of the flexibility method.

The general theory of the stiffness method is initially derived from the
intuitive concepts of the direct solution of the basic equations of equilibrium,
compatibility, and material properties. The theory is presented and explained
using truss behavior. Thus, at the beginning of the book the reader has the
opportunity to observe the method unencumbered by generalized arguments.
Subsequently, the principle of virtual work is explained and offered as an al-
ternative theoretical basis for the stiffness method. The flexibility method is
similarly derived by direct solution of the basic equations and from the prin-
ciple of complementary virtual work. Applications of the stiffness method are
given for beams, planar frames, space trusses, beam grid works, and space
frames. Miscellaneous topics required to complete our coverage of the stiff-
ness method are also described.

The three principal aspects of analyzing structures using matrix methods
are: (a) understanding the method (i.e., the theory plus its limitations and
applications); (b) developing appropriate computer programs; and (c) solving
actual structures on the computer —this involves idealizing the problem, pre-
paring and investigating the data, information processing, and the numerical
methods necessary to obtain the solution. Each component is a vital link in
implementing and using matrix methods of structural analysis for routine pro-
duction problems. The material in this text is devoted to an understanding of
the method with an appreciation for writing computer programs and using
production-level programs to solve actual structures. The stiffness and flexi-
bility methods are cast in a form appropriate for use on the computer, but
the details of computer implementation are not discussed. It is occasionally
useful for the student to understand the power of the method by investigating
structures that require a computer; a sufficient number of exercise problems
of this type are provided. We urge the reader to use available software to carry
out long tedious computations. For example, programs such as CAL86,' used
in the mode where only matrices are manipulated, require the user to load the
basic matrices and write the appropriate code in the metalanguage of the pro-
gram to attain the required solution.

The contents of the main body of the book are divided into three cate-
gories. The materials in Chapter 1 serve to orient the student to matrix struc-
tural analysis and provide a basic introduction and appreciation for the history
and scope of the various theorems and methods. The development of the stiff-
ness method in Chapters 2 and 3 using the basic equations and energy meth-

'Wilson, E. L. CAL86 Computer Assisted Learning of Structural Analysis and the CAL/SAP
Development System, Report No. UCB/SESM-86/05, Berkeley, Calif., 1986.
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ods, respectively, is strongly tied to practical structures. Chapters 4 and 5
reinforce the theory and give definite applications of the method for various
types of structures. The special topics of the stiffness method have been as-
sembled in Chapter 6; thus, the orderly flow of the development is not dis-
rupted, and these important aspects of solving problems are treated together.
Chapter 7 on the flexibility method using the solution of the basic equations
and the principle of complementary virtual work parallels the stiffness method
derivation in Chapters 2 and 3. The theory in this chapter is strongly connected
to actual structural problems. The appendix materials complement the main
body of the book and give the reader opportunities to study the solution of
linear algebraic equations and review elementary matrix operations.

A broad collection of examples demonstrates the principles and assists
the reader in developing an active understanding of the concepts. An unlimited
number of exercise problems can be obtained through the program shell
PANDORAS BOX (available from the author). This program contains a menu
of structural groups and subgroups that are illustrated in the text (i.e., ap-
propriate configurations of trusses, beams, and frames will appear at the end
of each chapter). The program also contains a random number generator, an
executable segment to solve for the structural deflections and forces, plus sup-
porting graphics. An instructor equipped with a disk of PANDORAS BOX
can select the category of exercise problem, and the program responds with a
graphics display of the structure, the problem data, and the solution. Problem
dimensions, loads, etc., are randomly generated; therefore, a different prob-
lem can be assigned to each student, and problems need never be repeated
from year to year.

The book is designed to be used in aerospace engineering, civil engineer-
ing, mechanical engineering, and engineering science curricula. A logical pro-
gression of topics with a uniform and continuous flow of information can be
obtained by exercising modest discretion in selecting individual chapters or
sections. An introductory course in matrix structural analysis with an empha-
sis on problem-solving skills can be constructed using material from Chapters
1, 2, 4, and 5, with topics such as matrix condensation, release of generalized
member nodal forces, and nodal coordinates selected from Chapter 6. By
omitting Chapter 5 and including Chapter 3, one obtains a more theoretically
oriented presentation. In contrast, an energy orientation toward the subject is
obtained by choosing Chapters 1 and 3, plus selections from Chapters 5, 6,
and 7. These skeletal outlines can be expanded with additional topics for mul-
ticourse sequences, and the book is also arranged so that a cover-to-cover
study is possible. It is also envisaged that the book can be used effectively in
self-study programs.

Many people have played a role in writing this book. I express my sincere
thanks for the valuable suggestions of the reviewers: Dr. Dan Frangopol, Uni-
versity of Colorado; Dr. Daniel L. Garber, University of Maryland; Dr. James
K. Nelson, Texas A&M University; and Dr. Jay A. Puckett, University of
Wyoming. Finally, I extend special thanks to the students at the University
of Idaho and the University of Wyoming for enduring the inconvenience of
studying from the manuscript form of this book.

Ronald L. Sack



SYMBOLS AND NOTATION

Symbols are generally defined where they first appear. Some symbols have
been used in different contexts to define several quantities. In general we have
used lower-case symbols to indicate quantities associated with element coor-
dinates and capital letters for global quantities. We use p (P) to indicate nodal
applied forces (both loads and reactions) and u (U) to denote nodal displace-
ments; k (K) contains the stiffness elements and f (F) denotes the flexibility
matrix. Matrices are shown in bold print, and the elements of a column matrix
are written within brackets, { }, to conserve space in the text.
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M

NDOF, NE, NN,
NR, NOK, NOS

N

Kinematics matrix (partitioned into a,, and a,); matrix of coeffi-
cients for polynomial

Cross-sectional area of a member

Member width

Statics matrix (partitioned into b, and b;)

Matrix relating nodal displacements to element strains
Column matrix of element deformations (d = aU)

Column matrix of initial element deformations

Element force transformation matrix for global displacements
Element force transformation matrix for local displacements
Modulus of elasticity (i.e., Young’s modulus)

Matrix of elastic constants

Element flexibility matrix

Global flexibility matrix

Modulus of elasticity in shear

Moment of inertia

Identity (unit) matrix

St. Venant’s torsion constant

Element stiffness matrix with elements k;; expressed in global co-
ordinates

Element stiffness matrix with elements k;; expressed in local co-
ordinates

Structural stiffness matrix with elements K;; expressed in global
coordinates

Length
Bending moment

Number of: degrees of freedom; elements; nodes;
reactions; kinematic indeterminacies; static indeterminacies

Element axial force
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SYMBOLS AND NOTATION

Column matrix of shape functions

Null matrix

Column matrix of nodal element forces in global coordinates
Column matrix of nodal element forces in local coordinates

Column matrix of initial nodal element forces in global coordi-
nates

Column matrix of initial nodal element forces in local coordinates

Column matrix of applied nodal forces in global coordinates (s =

Column matrix of known applied nodal forces in global coordi-
nates

Column matrix of unknown applied nodal forces in global coor-
dinates

Column matrix of initial forces in global coordinates
Distributed load magnitude

Column matrix of reaction forces

Column matrix of element forces and reactions
Temperature

Transformation matrix

Displacements at node / for a structure in the x, y, and z direc-
tions, respectively

Continuous functions expressing displacements in the x, Yy, and z
directions, respectively

Displacements at node i for an element in the x, y, and z direc-
tions, respectively

Displacements at node i for an element in the X, 7, and Z direc-
tions, respectively

Column matrix of nodal displacements in global coordinates
Column matrix of nodal displacements in local coordinates

Column matrix of nodal displacements for the entire structure in
global coordinates

Column matrix of unknown displacements in global coordinates
Column matrix of known displacements in global coordinates
Shear force

Work and complementary work done by external forces

Strain energy and complementary strain energy

Orthogonal cartesian global (structural) coordinates

Orthogonal cartesian local coordinates

Column matrix of redundant forces



SYMBOLS AND NOTATION

SUBSCRIPTS

SUPERSCRIPTS

ij

T
-1
GREEK SYMBOLS
a (alpha)
a,B,y

v (gamma)
I' (gamma)
6 (delta)

A (delta)
e (epsilon)
0 (theta)
O (theta)
« (kappa)
x, (kappa)
TR

v (nu)

o (sigma)
L (sigma)

xiii

The node (point) associated with the quantity

Degrees of freedom with known forces and unknown displace-
ments

Degrees of freedom with unknown forces and known displace-
ments

Quantity associated with the primary structure; used in the flexi-
bility method

Quantity associated with the structural redundants; used in the
flexibility method

Force (or moment) that is equivalent in an energy sense to a dis-
tributed loading

Force (or moment) required to give zero displacement at the point
(i.e., a fixed-end force)

The interval (element) associated with the quantity

Quantity initially introduced by temperature, fabrication error,
precambering, etc.

Transpose of a matrix
Inverse of a matrix

Coefficient of linear thermal expansion

Angles measure to a vector from the positive x, y, and z axes,
respectively

Shear strain
Matrix of direction cosines; an orthogonal transformation

Deflection; increment of a quantity; first variation of a quantity
(a virtual quantity)

Deflection; total change in a quantity

Translational strain

Angle; rotation of node with respect to local coordinates
Angle; rotation of node with respect to global coordinates
Curvature of a beam

Shear constant

Direction cosines (i.e., cos «, cos 3, cos v, respectively)
Poisson’s ratio

Normal stress

Summation of quantities
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1 INTRODUCTION

Engineered structures must ensure the safety and welfare of the occupants and
general public by performing in a prescribed manner. Strength requirements
are accompanied by stiffness constraints to prevent excessive deflections,
bouncy floors, outward-tilting walls, uncomfortable structural oscillations, and
the like. Thus structural analysis and design are intertwined since behavior is
affected by the arrangement of members and distribution of materials. New
complex systems require more precise engineering; many major contemporary
structures, such as the Boeing 747 aircraft, the Swiss Flesenau Bridge, and the
Sears Tower, owe their existence to computer-oriented structural analysis and
design. This chapter examines the origins and utility of matrix structural
analysis, and its relationship to classical methods.

1.1 HISTORICAL CONTEXT OF MATRIX STRUCTURAL
ANALYSIS

The airplane and digital computer are responsible for revolutionizing structur-
al analysis. In the 1940s and 1950s structural engineers were confronted with
two highly statically indeterminate systems: the swept-wing and delta-wing
aircraft. The governing equations were cast ab initio (from the beginning) in
matrix format, but this approach required solution of large sets of simulta-
neous linear algebraic equations. At the time, relaxation methods were used
extensively to solve the governing equations of structural behavior; therefore,
the requirement to deal with great numbers of algebraic equations was an
anathema to the engineer. Fortuitously, the University of Pennsylvania
unveiled the 30-ton ENIAC digital computer in 1946. The invention of the
transistor in 1947 and the silicon chip in 1959 were pivotal discoveries that
accelerated the development of the digital computer and gave impetus to the
structural analysis revolution. By embracing this new computing technology,
the structural engineers of those two decades completely changed structural
analysis. Trusses, beams, and frames were initially investigated, but in the mid-
1950s a group at the Boeing Company demonstrated that the procedure could
be extended to continua. Common usage now dictates that matrix structural
analysis designates investigations of structures composed of articulated or dis-
crete components, whereas the finite element method denotes analysis of con-
tinua.

Structural analysis of the early swept-wing aircraft in 1947 depended
upon work from the 1800s by James Clerk Maxwell and Otto Mohr. Their

1



Chapter 1 INTRODUCTION

method of consistent displacements is an example of a classical compatibility
method yielding sets of simultaneous linear algebraic equations, with the struc-
tural flexibilities as the coefficients and the forces as the unknowns. A new
method, called the flexibility or force method, was formulated and distin-
guished from traditional compatibility procedures by the fact that all quan-
tities and equations were formulated initially as matrices and manipulated
using the associated algebra; therefore, the operations are computer oriented.

In 1953 the delta-wing aircraft was the impetus for a second computer-
oriented approach to structural analysis. By broadening the scope of tradi-
tional equilibrium methods and formulating the equations from inception using
matrices, the structural engineers of the 1950s obtained a set of linear algebraic
equations with the structural stiffnesses as the coefficients and the displace-
ments as the unknowns. Thus the stiffness or displacement method was con-
ceived.

Interest in energy methods was also stimulated during this time, but
structural mechanics has historically relied upon energy principles. Archi-
medes (287-212 B.c.), Leonardo da Vinci (1452-1519), and Galileo (1564-1642)
each used some form of the work expression to substitute for the equations of
equilibrium in lever and pulley systems. Johann Bernoulli (1717) was the first
to suggest virtual displacement, and Maupertuis (1740) introduced the concept
of measuring equilibrium of rigid bodies by minimizing the total system poten-
tial. Leonhard Euler (1744) recognized that energy methods are an alternative
approach for solving problems of structural mechanics and used minimization
principles to investigate stable equilibrium for deformable bodies; he used
expressions for strain energy suggested by Daniel Bernoulli. Lame (1852)
derived the principle of conservation of energy and named it for his friend
Clapeyron; he used actual forces, stresses, displacements, and strains. James
Clerk Maxwell (1864) and Otto Mohr (1874) independently took the results of
Lame, and, using a dummy load, investigated statically indeterminate
trusses. Thus, the principle of virtual forces is also known as the Maxwell-
Mohr method. Castigliano (1873) published the extremum version of Lame’s
work. Since Lame used actual quantities, Castigliano’s theorem, part II, is
valid only for linear elastic systems. Crotti (1878) and Engesser (1889) subse-
quently extended this result, thereby making the minimization principle
conform to the principle of complementary virtual work for nonlinear elastic
systems.

In 1954 J. Argyris and S. Kelsey formulated matrix structural analysis
using energy principles. Matrix structural analysis emanated from physically
directed thinking and was derived by satisfying the fundamental equations of
structural mechanics; therefore, the application of energy principles was the
next logical step in the evolution. Because of the initial popularity of the flex-
ibility method during the 1950s, the corresponding principle of complementary
virtual work was emphasized. In contrast, the stiffness method arises from the
principle of virtual work, but early derivations represented this simply as an
alternate choice of variables (i.., displacements as unknowns instead of forces).
Subsequent work revealed that the stiffness method, based upon the principle
of virtual work, is a numerically efficient procedure for implementing the clas-
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sical Rayleigh-Ritz method, which was conceived in 1909. The finite element
method owes its existence and wide appeal to this fact.

MATRIX STRUCTURAL ANALYSIS AND CLASSICAL
METHODS

Thus matrix structural analysis has come to fruition since the 1940s, but its
roots are in classical structural mechanics. Since the computer formulates and
solves the equations, large structures can be investigated. We can use either
compatibility or equilibrium methods and formulate the method using the fun-
damental equations of structural mechanics or energy principles. Therefore, it
is instructive to recall the basic principles and classical methods of structural
analysis and observe their relationship to matrix structural analysis.

Structures must be in equilibrium, with their displacements in a compat-
ible state and material laws satisfied. The structural engineer can investigate
these primary behavioral tenets by either: (a) solving the fundamental equa-
tions or (b) employing energy principles.

Double integration, the method of elastic weights, and the moment-area
method yield structural displacements from the fundamental equations. We
use force-displacement relationships to assemble equations of structural
response, thereby satisfying equilibrium, compatibility, and material laws.
Compatibility methods mandate identifying statically indeterminate elements
and imposing compatibility requirements, thus producing sets of equations
with the structural flexibilities as coefficients and forces as unknowns. The
method of consistent displacements and the three-moment equation are exam-
ples of the compatibility method.

Alternatively, by invoking equilibrium at points connecting structural ele-
ments we can formulate sets of simultaneous linear algebraic equations with
the structural stiffnesses as coefficients and displacements as unknowns. This
approach begets equilibrium methods; the slope-deflection and the moment-
distribution methods are two classical procedures in this category.

Energy principles present an alternative approach for investigating struc-
tural behavior. The principle of virtual displacements, the unit displacement
theorem, and Castigliano’s theorem, part I, are examples of energy methods,
wherein equilibrium is satisfied implicitly. In contrast, the principle of virtual
forces, the unit-load theorem, and Castigliano’s theorem, part I1, are comple-
mentary virtual work theorems that satisfy compatibility implicitly.

Virtual work theorems call for varying the displacement and correspond-
ing strains, whereas complementary virtual work theorems require the forces
and stresses to undergo variations. The former approach produces equilibrium
methods, while the latter gives rise to compatibility procedures. For example,
recall the method of least work for linearly elastic systems. By Castigliano’s
theorem, part II, the partial derivative of the strain energy with respect to a
force gives the corresponding displacement. If that displacement is zero (e.g.,
for a redundant reaction), we obtain what appears to be a minimum principle.
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This, of course, is a compatibility method obtained from a complementary
virtual work principle.

For systems with many unknowns it is convenient to formulate the equa-
tions from the beginning in matrix form; thus, subsequent manipulations are
executed using matrix operations, which can be conveniently programmed in a
computer language. If we use a compatibility method (either by solving the
fundamental equations or invoking a complementary virtual work principle)
we obtain sets of simultaneous linear algebraic equations involving structural
flexibilities. In contrast, by formulating the solution using either the principle
of virtual work or the fundamental equations of structural behavior, we
mandate nodal equilibrium and obtain sets of simultaneous linear algebraic
equations embodying the structural stiffnesses. The former approach is the
Slexibility or force method, whereas the latter is the stiffness or displacement
method.

We can program the force method to automatically identify statically
indeterminate components or systems. We formulate the coefficient matrix of
system flexibilities using a matrix triple product; one of the basic matrices
required for this process expresses system equilibrium, while another simply
contains element flexibilities. The computer executes a large number of oper-
ations and consumes a great amount of time in formulating the global flex-
ibility matrix. In the formative stages, the stiffness method suffered from
engineers obsessed with the duality of the two methods. That is, since the basic
equilibrium matrix of the flexibility method can be shown to define the system
compatibility equations, we can formulate the global stiffness matrix using a
matrix triple product in a fashion resembling that employed in constructing
the global flexibility matrix. Equations can elegantly express this duality, but
the approach is computationally inefficient. The global stiffness matrix is most
efficiently formulated using list processing. By clinging to the duality of equa-
tions, the early pioneers nearly rang the death knell for the stiffness method.
We now recognize duality for what it is: an interesting fact with few useful
computational implications. Today, the stiffness method has almost totally
supplanted the flexibility method.

DISCUSSION

Perhaps in a few years we will not be required to distinguish computer-
oriented structural analysis by appending the adjective, matrix. This specula-
tion is strengthened by the capabilities of the available computing hardware
and software. In the early days of computers, the user was required to prepare
punched cards, learn elaborate access protocol, and struggle with “turn-
around time”; the microcomputer has eliminated all of this. In addition, many
classical methods can be implemented on a standard spreadsheet, thus quali-
fying them to be called computer methods. Larger problems simply require
more computing power. The supercomputer offers solutions for mammoth
systems, whereas intermediate-sized problems can be solved using some com-
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ponent of the array of available equipment between the micro- and super-
computer such as the mini- or mainframe computer.

The spectrum of approaches to structural analysis includes classical,
approximate, and computer-oriented methods, and each has its function. By
interpreting computer solutions using approximate analysis, the structural
engineer can avoid the computer siren that lures acceptance of dubious
machine-generated results with the implication that computer output is above
question. Since nodes can be misplaced, members inadvertently omitted, and
entire systems incorrectly modeled, it is wise to remember the old computer
maxim: “garbage in, garbage out.”



