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PREFACE

This book is the first of a series of monographs on
mathematical subjects which are to be published under
the auspices of the Mathematical Association of America
and whose publication has been made possible by a
very generous gift to the Association by Mrs. Mary
Hegeler Carus as trustee for the Edward C. Hegeler
Trust Fund. The purpose of the monographs is to make
the essential features of various mathematical theories
accessible and attractive to as many persons as possible
who have an interest in mathematics but who may not
be specialists in the particular theory presented, a pur-
pose which Mrs. Carus has very appropriately described
to be “the diffusion of mathematical and formal thought
as contributory to exact knowledge and clear thinking,
not only for mathematicians and teachers of mathe-
matics but also for other scientists and the public at
large.”

The attainment of this end will not always be easy
for authors who have long specialized in unraveling the
intricacies of the domains in which their principal activ-
ities lie, and the clientele of readers which they may
reasonably hope to interest will vary greatly with the
subjects presented. It would obviously be unwise to
regard this first attempt as in any final sense a model
for the many monographs which it is hoped will follow.
Later authors will doubtless profit much by the experi-
ences of those who have written before, but varieties of
subjects and types of readers to be addressed are likely
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vi PREFACE

to require an equally large variety of methods of presen-
tation. It is possible that some monographs will be
entirely descriptive or historical in character, others
devoted to the treatment in detail of special mathemati-
cal questions which can be approached without elaborate
prerequisite study, and still others of types not yet
devised but which are certain to be suggested as the series
progresses. One can readily foresee the beneficial influ-
ence which the monographs will have in encouraging and
developing types of descriptive mathematical writing
suited to the very laudable purposes for which the series
has been inaugurated.

The theory to which the present monograph is
devoted, the calculus of variations, is one whose develop-
ment from the beginning has been interlaced with that of
the differential and integral calculus. Without any
knowledge of the calculus one can readily understand at
least the geometrical or mechanical statements of many
of the problems of the calculus of variations and the
character of their solutions, as an examination of the
chapters to follow will show. Thus if two points not in
the same vertical line are given we may ask for the curve
joining them down which a marble starting with a given
initial velocity will roll from one point to the other in the
shortest time. The solution is a piece of an inverted
cycloid, and a cycloid is the curve described by a point
on the rim of a wheel as the wheel rolls along the ground.
Or if two points above a horizontal x-axis are given we
may seek to find the curve which joins them and which
when rotated around the x-axis generates a surface of
revolution of minimum area. The solution curve will
have sometimes one and sometimes the other of two
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forms. The first of these is the broken line consisting
of the two perpendiculars from the points to the x-axis
and the portion of the axis between them, in which case
the minimum surface consists of two circular disks. The
second is an arc of a catenary, and the form of a catenary
is that which a chain naturally takes when suspended
from two pegs. The surface generated in this latter case
is the capstan-shaped surface assumed by a soap film
suspended between two wire circles having a common
axis.

The discovery and justification of the results which
have just been described, apart from their simple state-
ment, do require, however, acquaintance with the prin-
ciples of the calculus, and in the following pages it is
assumed that the reader has such an acquaintance. This
should not deter others who may be interested from exam-
ining the introductions to the various chapters and the
italicized theorems throughout the book, many of which
should be perfectly intelligible to everyone. The only
place where results not usually deduced in the ordinary
calculus course are used is in the last chapter, where
some properties of differential equations are required
which have already been clearly illustrated in the three
preceding chapters, and which are described in detail
in the text.

In selecting material for presentation it seemed
desirable to begin by studying special problems rather
than the general theory. The first chapter of the book
describes the historical setting out of which the theory
of the calculus of variations grew, and the character of
some of the simpler problems. The next three chapters
are devoted to the development in detail of the known
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results for three special problems which illustrate in
excellent fashion the essential characteristics of the gen-
eral theory contained in Chapter V with which the book
concludes. The author was influenced in this selection
by several considerations. In the first place the theory
of the special problems here presented requires only
analysis of a concrete sort in which one is much aided by
intuition while accumulating experiences which assist
effectively in understanding later the notions of the
general theory. In the second place the theory of these
problems, though well known, is scattered in various
places in treatises and memoirs on the calculus of varia-
tions, and the presentation of it in collected form should
therefore be useful as well as instructive. Finally it is
a fact that the modern theory of the calculus of varia-
tions has been presented for the most part in elaborate
mathematical treatises and is not readily accessible
except to the specialist. The elementary discussions of
the theory, in the larger more general treatises on analy-
sis and also in separate form, usually lay their emphasis
upon the deduction of the differential equations of the
minimizing curves for various types of problems, and
relatively little upon other aspects of the theory. It is
doubtless partly for this reason that in applied mathe-
matics much more use has hitherto been made of these
differential equations and their solutions than of the
further properties of minimizing curves, though it is
well known that in many cases these further properties
are closely related to interesting conditions for stability
in associated problems of mechanics.

Such are the reasons why it seemed desirable to the
author to present in this book the theory of special



PREFACE ix

problems with some completeness, even if limitations of
space should permit only a few of them to be discussed.
It must be admitted that in the literature of the cal-
culus of variations there are not many particular cases
to which the general theory has been thoroughly
applied. The assembling of as many such problems as
possible and the completion of others would be a work
of great usefulness and interest.

At the end of Chapter V is a list of the books on the
calculus of variations with a few other references of
importance for the topics considered in the text. The
notes, indicated serially in the text by superscripts, follow

this list of references.
G. A. Biiss
TaE UNIVERSITY OF CHICAGO
October, 1924
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CHAPTER 1

TYPICAL PROBLEMS OF THE CALCULUS OF
VARIATIONS

1. The invention of the calculus. When the student of
mathematics pauses to look back upon the achievements
of mathematicians of the past he must be impressed with
the fact that the seventeenth century was a most impor-
tant epoch in the development of modern mathematical
analysis, since to the mathematicians of that period we
owe the invention of the differential and integral cal-
culus. At first the calculus theory, if indeed at that time
it could be called such, consisted of isolated and some-
what crude methods of solving special problems. In
the domain of what we now call the integral calculus,
for example, an Italian mathematician named Cavalieri
(1598-1647) devised early in the seventeenth century a
summation process, called the method of indivisibles, by
means of which he was able to calculate correctly many
arcas and volumes. His justification of his device was
so incomplete logically, however, that even in those
relatively uncritical times his contemporaries were
doubtful and dissatisfied. Somewhat later two French
mathematicians, Roberval (1602-75) and Pascal (1623-
62), and the Englishman Wallis (1616-1703), improved
the method and made it more like the summation pro-
cesses of the integral calculus of today. In the case of
the differential calculus we find that before the final quar-
ter of the seventeenth century Descartes (1596-1650),
Roberval, and Fermat (1601-65) in France, and Barrow
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2 TYPICAL PROBLEMS

(1630-77) in England, all had methods of constructing
tangents to curves which were pointing the way toward
the solution of the fundamental problem of the differ-
ential calculus as we formulate it today, namely, that of
determining the slope of the tangent at a point of a curve.

At this important stage there appeared upon the
scene two men of extraordinary mathematical insight,
Newton (1642-1727) in England, and Leibniz (1646-
1716) in Germany, who from two somewhat different
standpoints carried forward the theory and applications
of the calculus with great strides. It is a mistake,
though we often find it an easy convenience, to regard
these two great thinkers as having invented the calculus
out of a clear sky. Newton was in fact a close student -
of the work of Wallis, and a pupil of Barrow whom he
succeeded as professor of mathematics at Cambridge,
while we know that Leibniz visited Paris and London
early in his career and that he there became acquainted
with the most advanced mathematics of his day. No one
could successfully contest the fact, however, that these
two men were the most able spokesmen and investigators
of the seventeenth-century school of mathematicians to
which we owe the gradual evolution of the calculus.

In spite of the great abilities of Newton and Leib-
niz the underlying principles of the calculus as exposed
by them seem to us from our modern viewpoint, as indeed
to their contemporaries and immediate successors, some-
what vague and confusing. The difficulty lies in the
lack of clearness at that early time, and for more than a
century thereafter, in the conceptions of infinitesimals
and limits upon which the calculus rests, a difficulty
which has been overcome only by the systematic study
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of the theory of limits inaugurated by Cauchy (1789-
1857) and continued by Weierstrass (1815-97), Riemann
(1826-66), and many others.

2. Maxima and minima. Among the earliest prob-
lems which attracted the attention of students of the
calculus were those which require the determination
of a maximum or a minimum. Fermat had devised as
early as 1629 a procedure applicable to such problems,
depending upon principles which in essence, though not in
notation, were those of the modern differential calculus.
Somewhat nearer to the type of reasoning now in com-
mon use are the methods which Newton and Leibniz
applied to the determination of maxima and minima,
methods which are also characteristic of their two con-
ceptions of the fundamental principles of the differential
calculus. Newton argued, in a paper written in 1671
but first published in 1736, that a variable is increasing
when its rate of change is positive, and decreasing when
its rate is negative, so that at a maximum or a minimum
the rate must be zero. Leibniz, on the other hand, in a
paper which he published in 1684, conceived the problem
gecmetrically. At a maximum or a minimum point of
a curve the tangent must be horizontal and the slope
of the tangent zero.

At the present time we know well that from a purely
analytical standpoint these two methods are identical.
The derivative

(x) @)= Jim, 20 =/

of a function f(x) represents both the rate of change of
f(x) with respect to « and the slope of the tangent at a
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point on the graph of f(x). For in the first place the

fraction in the second member of equation (1) is the

average rate of change of f(x) with respect to x on the

interval from x to x+Ax, and its limit as the interval is

shortened is therefore rightly called the rate of change

of f(x) at the initial value

/ x of the interval. In the

second place this same quo-

y =f(x) tient is the slope of the

P w4t Aa) :%eca'nt'P.Q in Figure 1, and

(=) its limit is the slope of the

tangentat 2. Thus by the

& sl reasoning of either Newton

Fis. 1 or Leibnitz we know that

the maxima and minima of f(x) occur at the values of x
where the derivative f'(x) is zero.

It was not easy for the seventeenth-century mathe-
matician to deduce this simple criterion that the deriva-
tive f'(#) must vanish at a maximum or a minimum of
f(x). He wasimmersed in the study of special problems
rather than general theories, and had no well-established
limiting processes or calculus notations to assist him.
It was still more difficult for him to advance one step
farther to the realization of the significance of the second
derivative f”/(x) in distinguishing between maximum and
minimum values. Leibniz in his paper of 1684 was the
first to give the criterion. In present-day parlance we
say that f'(a) =0, f"’(a) 20 are necessary conditions for
the value f(¢) to be a minimum, while the conditions
f(@)=0, f’(a) >0 are sufficient to insure a minimum.
For a maximum the inequality signs must be changed in
sense. ‘

Q
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It will be noted that the conditions just stated as
necessary for a minimum are not identical with those
which are sufficient. We shall see in Chapter V that a
similar undesirable and much more baffling discrepancy
occurs in the calculus of variations. For the simple
problem of minimizing a function f(x) the doubtful
intermediate case when f'(a) and f”(a) are both zero
was discussed by Maclaurin (1698-1746) who showed how
higher derivatives ‘may be used to obtain criteria which
are both necessary and sufficient. For the calculus of
variations the corresponding problem offers great diffi-
culty and has never been completely solved.

3. Two problems of the calculus of variations which
may be simply formulated. When one realizes the diffi-
culty with which the late seventeenth-century school of
mathematicians established the first fundamental prin-
ciples of the calculus and their applications to such ele-
mentary problems in maxima and minima as the one
which has just been described, it is remarkable that
they should have conceived or attempted to solve with
their relatively crude analytical machinery the far more
difficult maximum and minimum problems of the calculus
of variations which were at first proposed. It is an
interesting fact that these early problems were not by
any means the least complicated ones of the calculus
of variations, and we shall do well therefore to introduce
ourselves to the subject by looking first at two others
which are easier to describe to one who has not already
amused himself by browsing in this domain of mathe-
matics.

The simplest of all the problems of the calculus of
variations is doubtless that of determining the shortest
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arc joining two given points. The co-ordinates of these
points will always be denoted by (#1, y1) and (2, y2) and
we may designate the points themselves when convenient
simply by the numerals 1 and 2. If the equation of anarc
is taken in the form

y=y(x) (m=x=m)

then the conditions that it shall pass through the two
given points are

2 yax)=y, ym@)=m»,

and we know from the calculus that the length of the
arc is given by the integral

I=f Vi+y'2dx,

where in the evaluation of the integral y’ is to be replaced
by the derivative y’(x) of the function y(x) defining the
arc. There is an infinity of curves y=y(«x) joining the
points 1 and 2. The problem of finding the shortest one
is equivalent analytically to that of finding in the class
of functions y(x) satisfying the conditions (2) one which
makes the integral / a minimum.

In the more elementary minimum problem of Section
2 above a function f(«x) is given and a value x =a is sought
for which the corresponding value f(a) is a minimum.
In the shortest-distance problem the integral I takes
the place of f(x), and instead of a value x=a making f(a)
a minimum we seek to find an arc Ey,; joining the points
1 and 2 which shall minimize /. The analogy between
the two problems is more perspicuous if we think of the
length 7 as a function I(E;) whose value is uniquely
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determined when the arc E, is given, just as f(x) in the
former case was a function of the variable x.

There is a second problem of the calculus of varia-
tions, of a geometrical-mechanical type, which the
principles of the calculus readily enable us to express also
in analytic form. When a wire circle is dipped in a soap
solution and withdrawn, a circular disk of soap film bound-
ed by the circle is formed. If a second smaller circle is
made to touch this disk and then moved away the two
circles will be joined by a sur-
face of film which is a surface |y
of revolution in the particular
case when the circles are par-
allel and have their centers on
the same axis perpendicular to
their planes. The form of this ¢
surface is shown in Figure 2.

It is provable by the prin-
ciples of mechanics, as one
may readily surmise intuitive-

ly from the elastic properties

of a soap film, that the sur-
face of revolution so formed must be one of minimum
area, and the problem of determining the shape of the film
is equivalent therefore to that of determining such a mini-
mum surface of revolution passing through two circles
whose relative positions are supposed to be given as indi-
cated in the figure.

In order to phrase this problem analytically let the
common axis of the two circles be taken as the x-axis,
and let the points where the circles intersect an xy-plane
through that axis be 1 and 2. If the meridian curve of

F16. 2
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the surface in the xy-plane has an equation y = y(x) then
the calculus formula for the area of the surface is 2w
times the value of the integral

I=f’“y1/1+y'2dx.

The problem of determining the form of the soap film
surface between the two circles is analytically that of
finding in the class of arcs y=y(x) whose ends are at the
points 1 and 2 one which minimizes the last-written inte-
gral I.

4. The problem of Newton. It was remarked above
that the earliest problems of the calculus of variations
were not by any means the simplest. In his Principia
(1686)* Newton states without proof certain conditions
which must be satisfied by a surface of revolution which
is so formed that it will encounter a minimum resistance
when moved in the direction of its axis through a resisting
medium. A particular case of the problem of finding
such a surface is the well-known one of determining the
form of a projectile which for a specified initial velocity
will give the longest range. In practical ballistics it
turns out that one of the most difficult parts of the investi-
gation of this question lies in the experimental determina-
tion of the retardation law for bodies moving in the air at
high rates of speed. Newton assumed a relatively simple
law of resistance for bodies moving in a resisting medium
which does not agree well with our experience with bodies
moving in the air, but on the basis of which he was able
to find a condition characterizing the meridian curves
of the surfaces of revolution which encounter minimum

@



