fom)

ACM MONOGRAPH SERIES

D_ecision Table Languages and Systems

John R. Metzner
Bruce H. Barnes

TP 7860932

MAMRANIL

E7860932

DECISION TABLE
LANGUAGES AND SYSTEMS

JOHN R. METZNER

Computer Science Department
University of Missouri-Rolla
Rolla, Missouri

BRUCE H. BARNES

Division of Mathematical and Computer Sciences
National Science Foundation
Washington, D. C.

ACADEMIC PRESS New York San Francisco London 1977

A Subsidiary of Harcourt Brace Jovanovich, Publishers

CoPYRIGHT © 1977, BY ACADEMIC PRrEss, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

LiBRARY OF CONGRESS CATALOG CARD NUMBER:

Library of Congress Cataloging in Publication Data

Metzner, John R
Decision table languages and systems.

(ACM monograph series)

Bibliography: p.

Includes index.

1. Electronic digital computers—Programming.
2. Decision logic tables. L Barnes, Bruce H., joint
author. II. Title. III. Series: Association for
Computing Machinery. ACM monograph series.
QA76.6.M484 001.6'42 77-4011

ISBN 0-12-492050-0

PRINTED IN THE UNITED STATES OF AMERICA

DECISION TABLE LANGUAGES AND SYSTEMS

ACM MONOGRAPH SERIES

Published under the auspices of the Association for
Computing Machinery Inc.

Editor ROBERT L. ASHENHURST The University of Chicago

A. FINERMAN (Ed.) University Education in Computing Science, 1968

A. GINZBURG Algebraic Theory of Automata, 1968

E.F.Copp Cellular Automata, 1968

G. ErRNsT AND A. NEWELL GPS: A Case Study in Generality and
Problem Solving, 1969

M. A. GAVRILOV AND A. D. ZAKREVsKII (Eds.) LYaPAS: A Programming
Language for Logic and Coding Algorithms, 1969

THEODOR D. STERLING, EDGAR A. BERING, JR., SEYMOUR V. POLLACK,
AND HERBERT VAUGHAN, JR. (Eds.) Visual Prosthesis:
The Interdisciplinary Dialogue, 1971

JouN R. RIcE (Ed.) Mathematical Software, 1971

ELLIOTT I. ORGANICK Computer System Organization: The B5700/B6700
Series, 1973

NEeIL D. JoNes Computability Theory: An Introduction, 1973

ARrTO SALOMAA Formal Languages, 1973

HARVEY ABRAMSON Theory and Application of a Bottom-Up Syntax-
Directed Translator, 1973

GLEN G. LANGDON, Jr. Logic Design: A Review of Theory and Practice,
1974

MoNROE NEWBORN Computer Chess, 1975

ASHOK K. AGRAWALA AND TOMLINSON G. RAUSCHER Foundations of Mi-
croprogramming: Architecture, Software, and Applications, 1975

P. J. CourTols Decompo%ab’hty Queuemg and Computer System Appli-
cations, 1977 £

JoHN R. METZNER AND BRUCE H. BARNES Decision Table Languages and
Systems, 1977 ‘ '

In preparation

ANITA K. JONES (Ed.) Perspectives on Computer Science: From the 10th
Anniversary Symposium at the Computer Science Department, Carne-
gie-Mellon University

Previously published and available from The Macmillan Company,

New York City

V. KryLov Approximate Calculation of Integrals (Translated by A. H.
Stroud), 1962

PREFACE

This monograph addresses the entire topic of decision tables and
considers its various aspects at three distinct but nested levels. At the
lowest level is the decision table itself, its structure, conventions, and
semantics. At the second level is the decision table language, of which
decision tables are components. The third, or system, level includes the
decision table language, its processor or translator, its users and the
application area from which their problems are drawn, and the envi-
ronment in which the algorithms expressed in the decision table lan-
guage are to be operant.

The overall purpose of this volume is to widen the use and apprecia-
tion of decision tables. The authors’ intent is to stimulate interest in
decision tables, especially in those who have not made use of them in
the past. Of greater moment is our intent to encourage and facilitate
further research, innovation, and development of decision table lan-
guages and systems. This is not another volume on “how to use deci-
sion tables,” but rather a treatment of the nature of decision tables as
linguistic entities and of ways in which decision table systems can be
adapted to suit a wide variety of particular purposes.

Accordingly, our attempt has been to orient the material herein
toward innovators in system analysis, designers of languages and their
systems, and students of the discipline often called “computer science”
whether they be in academic institutions or not. We seek to further the

vii

viii PREFACE
stated goals by appealing to this audience and providing;:

(1) a thoroughgoing linguistic examination of decision tables, a
survey of the features of existing decision table languages and systems,
and an exploration of generalizations thereof which exposes their po-
tential for improvement and adaptation;

(2) asound conceptual basis for further research on decision tables
and a comprehensive bibliography of the relevant literature; and

(3) encouragement to innovative but cogent language and system
design in the forms of provocative suggestions, opinions on the utility
of various features to particular classes of users and in constrained
operating environments, and a framework with which to evaluate the
features of candidate designs in their entire system context.

It must be admitted that decision tables often have a natural appeal to
those of us who have a strong appreciation of the succinct, and the
authors are not exceptions. This has led to a tendency toward brevity in
style which we were not wholly successful in counteracting, and for
which we must apologize.

Preface

CHAPTER 1

CHAPTER 2

7860932

CONTENTS

INTRODUCTION

Motivation and Outline

Decision Structure Tables

Spectrum of Decision Table Use
History of Decision Table Programming

SEMIOTICS

Setting

Decision Table Syntax

Semantics of Decision Table Languages
Decision Table Programming Languages

vii

13
16

21
22
23
27

vi CONTENTS

CHAPTER 3 PROGRAMMING LANGUAGE FEATURES

Introduction 39
Outer Language Features 40
Syntactic Features Ad
Semantic Features 48
Implementation Features 57
Special Features 80

CHAPTER 4 GENERALIZATION

Limitations 85
Outer Language Enrichments 86
Generalization of Syntax 98
Semantic Broadening 108
Implementation Improvements 124
Special Feature Enhancements 133
Overview 136

CHAPTER 5 DESIGN IMPLICATIONS

Feature Evaluation Method 137
Breadth of Decision Table Applicability 138
Suggested Design Procedure 140
Discussion cf Tables 141
Summary 152
APPENDIX

Number of Possible STPs 155
Language References 156
BIBLIOGRAPHY 159

Index 169

CHAPTER 1

INTRODUCTION

Motivation and Outline

Procedural disciplines in general and computer science in particular
have experienced a continuing and urgent need for improved vehicles
for the communication of algorithms. Programming languages used for
human-to-machine communication must bear an extra burden of utility
in human-to-human communication, even if it is only from the author
of a program to himself at a later time. Because of this extra burden and
to increase efficiency in program synthesis, programming languages
should be concise yet easily understood. Within programming lan-
guages, these needs for clarity and compactness are especially acute
with respect to linguistic elements for conditioning, particularly those
linguistic elements used to express the selection procedure by which a
processing task is broken down by cases.

The conditioning elements commonly included in higher-order lan-
guages supply binary branching based on combinations of arithmetic
tests along with many-way branching based on integral values of varia-
bles. While quite involved conditioning can be built up using these
elements, the resulting programs are often cluttered with housekeeping
variables which must be used to arithmetize the decision process and
record test results. For a simple example, suppose it is desired to
determine the quadrant in which the two-place vector X falls and
branch to a correspondingly labeled statement. The code to accomplish

2 1. INTRODUCTION

this might look like

IF (X(1). GE.0..GOTO 9
IF (X(2).LT.0.)GOTO3
GO TO 2

9 IF (X(2).LT.0.) GOTO 4

or
=1
IF (X(1).LT.0.) I=1+1
IF (X(2).LT.0) I=1+2
GO TO (1,2,4,3), |

or

IF X(1) <0 & X(2) <0 THEN GO TO S3; ELSE
IF X(1) <0 THEN GO TO S2; ELSE IF X(2) <0
THEN GO TO S4;

S1:

It is easy to imagine how obscure such code can become as increas-
ingly involved conditioning is needed in the effort to express increas-
ingly general algorithms.

Moreover, when many-way branching is built from test-and-branch
language elements, the flow of control is used to “remember’”’ the
outcomes of comparison tests. This use of control flow leads to pro-
grams which are difficult for people to comprehend because they force
the reader to backtrack in order to trace the paths and deduce the
combinations of conditions leading to the various branches. The situa-
tion is further confounded by the common (and space-efficient) ten-
dency for conditional statements to be distributed amid other types of
code rather than collected into sections which express the many-way
conditional branches involved. Flow charts offer only a small measure
of relief from the difficulties in comprehending programs containing
involved or distributed conditioning but are often laboriously pro-
duced to lend their increment of enlightenment.

When decision tables were introduced into the programming pro-
cess, it was felt that they had great potential for succinctly expressing
highly articulated procedures which select from many alternative case
treatments. However, they have not enjoyed acceptance in the pro-
gramming community commensurate with this promise, nor have they

MOTIVATION AND OUTLINE 3

shared in the rapid development of software technology experienced by
other areas such as operating systems and compilers.

The use of decision tables has been resisted partly because they
require a departure from the accustomed intermixing of decisions and
actions within algorithms. In other words, the natural opportunities to
employ decision tables when synthesizing algorithms are not suggested
when bottom-up programming practices are used. As the benefits of
top-down methods in problem analysis and programming become
more widely appreciated, and the use of top-down methods becomes
more prevalent, this barrier to decision table use is expected to di-
minish considerably.

A more serious impediment to wider decision table use has been
caused by that lack of general acceptance itself. Decision table lan-
guages and systems have not, in the forms developed so far, been
adapted to a very wide range of algorithmic situations, and they there-
fore have failed to reach the ““critical mass’’ of everyday use necessary to
generate impetus toward significant innovation and improvement.

Although this work naturally seeks to stimulate a general interest in
decision tables, its major attack is on the latter aspect of the problem. It
seeks to accelerate the development of decision table programming by
identifying its conceptual basis, generalizing its features, suggesting
innovative uses for the generalized features, and providing a method
for estimating their efficacy in decision table programming systems.
Following the introductory overview of the topic in this chapter, this
goal is attacked in four steps which form the subjects of the following
chapters.

Decision tables are first examined as linguistic entities by themselves
and as elements of decision table languages. Chapter 3 concentrates on
features of decision table programming languages and systems and
includes a summarization of the mixes of features found in several
which have been developed to operational status. The fourth chapter
proposes generalizations and extensions of the features identified. This
sampling of possible generalizations is intended to be provocative
rather than definitive; many are simply carry-overs from other, more
richly developed areas of software technology.

The final chapter outlines a procedure for designing decision table
programming languages and their systems. To underscore the richness
and adaptability of decision tables, the procedure assumes that the
language and system are to be tailored for a particular environment.
Taking account of the larger context containing people, problems, and
processors, environments are considered to include a conceptual por-

4 1. INTRODUCTION

tion relating to the subject area in which problems are formulated and
algorithms are synthesized. Also considered are the physical compo-
nents of environments which impose design constraints such as core
storage limitations or interpretive execution in conversational use. The
last chapter also bears the burdens of tying together the concepts and
features presented in the previous three chapters and of indicating
some of the many opportunities for further research, experimentation,
and development in decision table languages and systems.

Decision Structure Tables

Decision structure tables, as decision tables were initially termed,
have been used for many years to organize and document complex
decision procedures concisely. Their uses in tax rate tables and in the
rate books of insurance salesmen are familiar examples. Early formal
usage [157] was for the expression of a set of boolean functions of.
several variables. Incorporating the interpretations of the variables and
functions [78] created useful communication devices which were, for
many purposes, more suitable than either flow charts or prose [14,
180]. The development of these devices served somewhat to
standardize decision table languages around a core of conventions
which ever since has been retained.

A decision table is divided into two main regions, one specifying sets
of conditions which must be satisfied simultaneously, and the other
specifying sets of actions to be taken when corresponding condition sets
are satisfied. The two areas are placed with the condition portion above
the action portion, although some early formulations placed them hori-
zontally adjacent [59]. The vertical orientation will be used in this book
because tables in that form are more compact and, in the opinion of the
authors, easier to read. A matrix of symbol strings called entries is placed
in each of the regions to indicate the condition and action specifica-
tions. The two matrices have the same number of columns which are
aligned across the common boundary. The columns individually de-
scribe an “if . . . , then. . .” relationship called a rule; if the condi-
tions of the upper portion are all met, then the actions of the lower
portion are to be carried out.

Figure 1.1 illustrates a collection of such rules describing a decision
on how to spend a spring Saturday afternoon. The horizontal double
line separates its two regions, and the vertical lines distinguish its
rules. The internal horizontal line between its two rows of condition

DECISION STRUCTURE TABLES 5

Raining Not raining Not raining
Windy Calm or Breezy

or calm very windy
Clean the Spade Fly Kkites
basement the garden with children

FIGURE 1.1 Spring Saturday afternoon decision.

phrases represents the “and” conjoining them. This decision contains
three rules:

“If it is raining and either windy or calm, then clean the basement’’;

“If it is not raining and either calm or very windy, then spade the
garden’’;

“If it is breezy and not raining, then fly kites with the children.”

In this example, the symbol strings are English phrases which appear in
both the textual and tabular forms of decision description. In more
formal situations, the strings are restricted to be in a particular specified
language which we will abstractly call the base language.

Conciseness can be enhanced by “factoring out” common informa-
tion from the array elements in each row and placing it in the leftmost
column (set off by a double vertical line) called the stub. For conditions,
a truth-valued expression may be placed in the stub, leaving only truth
values in the columns specifying tests. For actions, the entire descrip-
tion of the action may be put in the stub, so that entries need only
indicate performance or nonperformance of the action. A table for
deciding about a trip to Boston is shown in this primitive form in
Figure 1.2.

This example shows a table for making one decision. It is called a
complete table because for every situation there is a rule whose condi-
tions will be satisfied; it cannot fail to specify a set of actions to be
taken. The confusing clutter of entry symbols in decision tables of this
form suggests the simplification to what is termed limited entry form
shown in Figure 1.3. Blank entries in condition rows indicate “don’t
care,” and blanks as action entries signify “’don’t perform.”” Since there
are now only two possible action entries, any nonblank character can be
used to carry the connotation “perform.”

Limited entry form also offers some help in recovering the textual

6 1. INTRODUCTION

C
Weather is fair TIF|T|F|T|F|T]|F 0
N
D
Plane seat reserved T|T|F|F|T|T|F|F 1
T
I
Hotel room reserved T|IT|T|T|F|F|F|F 0
N
S5
Take the plane T|F|F|F|F|F|F|F
A
c
Cancel plane seat FIFIF|FI|T|FI|FI|F T
I
o
Take the train FIT|T|T|F|F|F|F N
S
Try again tomorrow FIFIFIF|T|T|T|T

STUB ENTRIES

FIGURE 1.2 Trip to Boston decision table—primitive form.

forms of the rules of which the tables are composed. Reading down the
rule column, a T entry signals inclusion of the condition from the
horizontally corresponding stub into the “if . . .”” portion of the tex-
tual form, and an F entry calls for including the negation of the expres-
sion in the corresponding stub. Blank condition entries require neither;
the condition is simply not mentioned in the textual form. Similarly,

Weather is fair T|F

Plane seat reserved T|T|F|T|F

Hotel room reserved T|IT|T|F]|F

Take the plane X

Cancel plane seat X
Take the train X | X

Try again tomorrow X | X

FIGURE 1.3 Trip to Boston decision table—limited entry form.

DECISION STRUCTURE TABLES 7

action entries and blanks call for the inclusion and omission, respec-
tively, of their action stubs into the ““then . . .” portion of the rule.
For example, the fourth rule of Figure 1.3 becomes,

“If a plane seat has been reserved, and a hotel room has not been
reserved, then cancel the plane reservation, and try again tomorrow.”

This algorithm for rule reconstruction indicates that the rules of a
decision table are to be read from top to bottom and thereby places that
ordering on conditions and actions. The ordering was not conveyed by
the terms ““sets of conditions’’ (condition sets) or ““sets of actions’’ (action
sets) used previously, but ordering is regarded as implicit only for
actions in decision tables. Although the “and” conjoining individual
conditions in a rule suggests that they are independent of the order in
which they appear, they need not be so regarded. An example of
order-dependence among conditions is presented later.

It is far more obvious that the actions specified by a rule are to be
carried out in their top-to-bottom order of appearance. Figure 1.4 illus-
trates a rather mundane decision in which action sets differ only in the
ordering of their components. The situation is that of a pedestrian
(point A in Figure 1.4a) approaching an intersection governed only by a
red/yellow/green traffic signal and wishing to proceed in the same
direction from the diagonally opposite corner (point B) without undue
delay. The color of the signal he is facing initially determines which of
the two sequences of crossings and turns he will perform, as shown in
the decision table of Figure 1.4b. Since any nonblank symbol can be
used in action entries to indicate performance of actions, one could
make the tables smaller in some cases by using numerals to indicate the
order in which the corresponding actions are to be carried out. Figure
1.4c illustrates the reduction for this example.

Limited entry form for decision tables has several other desirable
characteristics. The use of the base language (English in the figures
presented so far) is confined to the stub portion, and the semantics of
the entry portion are quite simple—so simple, in fact, that the rules of a
limited entry decision table can be mechanically checked for logical
completeness, consistency, and redundancy [117]. Inconsistency or
redundancy can arise when a situation can be constructed in which the
“if . . .” portions of two rules can be found to hold. If the actions of the
two rules are the same in such a case, the pair is said to be redundant. If
the actions differ, the two rules (and thus, their table) are termed
inconsistent. Figure 1.5 illustrates these two conditions. The situation
““Condition 1 is true, Conditions 2 and 3 are false”” meets the condition

8 1. INTRODUCTION

B —>
— A
(a)
FACING RED LIGHT Y| N FACING RED LIGHT Y|[N
CROSS ON GREEN X TURN LEFT 1|2
TURN LEFT X[X CROSS ON GREEN 2(1
CROSS ON GREEN X | X TURN RIGHT 314
TURN RIGHT X | X CROSS ON GREEN 413
(c)
CROSS ON GREEN X
(b)

FIGURE 1.4 Crossing intersection decision: (a) situation, (b) “perform’” action entries,
(c) ordinal action entries.

specifications for both Rule 1 and Rule 2. Since their action specifica-
tions are identical, these two rules are redundant. The situation “Con-
ditions 1 and 2 are true and Condition 3 is false”” is said to satisfy the
condition sets of both Rule 1 and Rule 3. As these two rules call for the
performance of different sets of actions, they are inconsistent. (The term
contradiction is also used to describe this latter case [12, 81].)

It should be noted that these cases of apparent ambiguity derive from
the convention that the ordering of the rules within a decision table
carries no significance. Otherwise, the positions of the rules can be
used to denote their priorities. This and other related semantic aspects
will be explored more fully later.

A slight mutation of the limited entry conventions allows the right-
most rule to contain only “don’t care”” condition entries. Such a rule is
called an else rule and is understood to be invoked when the conditions
for no other rule are met. Figure 1.6 shows the convenience of using an
else rule by contrasting two limited entry tables (defining a logical

