Gary J. Chastek (Ed.)

Software
Product Lines

Second International Conference, SPLC 2
San Diego, CA, USA, August 2002
Proceedings

LNCS 2379

€)) Springer

Gary J. Chastek (Ed.)

Software
Product Lines

Second International Conference, SPLC 2
San Diego, CA, USA, August 19-22, 2002
Proceedings

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Gary J. Chastek

Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213, USA
E-mail: gjc@sei.cmu.edu

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Software product lines : second international conference ; proceedings /
SPLC 2, San Diego, CA, USA, August 19 - 22, 2002. Gary J. Chastek (ed.). -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;
Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2379)

ISBN 3-540-43985-4

CR Subject Classification (1998): D.2, K.4.3, K.6

ISSN 0302-9743
ISBN 3-540-43985-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingriiber Satztechnik GmbH, Heidelberg

Printed on acid-free paper SPIN: 10870457 06/3142 543210

Lecture Notes in Computer Science 2379
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London

Milan

Paris

Tokyo

Foreword

Software product lines are emerging as an important new paradigm for soft-
ware development. Product lines are enabling organizations to achieve impressive
time-to-market gains and cost reductions. In 1997, we at the Software Engineer-
ing Institute (SEI) launched a Product Line Practice Initiative. Our vision was
that product line development would be a low-risk, high-return proposition for
the entire software engineering community. It was our hope from the beginning
that there would eventually be sufficient interest to hold a conference. The First
Software Product Line Conference (SPLC1) was the realization of that hope.

Since SPLC1, we have seen a growing interest in software product lines.
Companies are launching their own software product line initiatives, product
line technical and business practices are maturing, product line tool vendors are
emerging, and books on product lines are being published. Motivated by the
enthusiastic response to SPLC1 and the increasing number of software product
lines and product line researchers and practitioners, the SEI is proud to sponsor
this second conference dedicated to software product lines.

We were gratified by the submissions to SPLC2 from all parts of the globe,
from government and commercial organizations. From these submissions we were
able to assemble a rich and varied conference program with unique opportunities
for software product line novices, experts, and those in between. This collection
represents the papers selected from that response and includes research and
experience reports.

I would like to take this opportunity to thank the authors of all submitted
papers, and the members of the program committee who donated their time
and energy to the review process. I offer my special appreciation to Len Bass
and Henk Obbink, the program co-chairs, to Gary Chastek, the tireless editor of
these proceedings, and to Pennie Walters who assisted in the editing process. We
hope you will enjoy the fruits of our labor. Together we are pushing the frontier
of software product lines.

August 2002 Linda M. Northrop

Preface

SPLC2 continues to demonstrate the maturation of the field of product lines
of software. By their nature, product lines cut across many other areas of soft-
ware engineering. What we see in the papers presented at this conference is
the sharpening of the distinction between software engineering for single system
development and software engineering for product lines. The distinction exists
not only during the software life cycle (requirements gathering, design, devel-
opment, and evolution) but also in the business considerations that enter into
which systems to build and how to manage the construction of these systems.

We have papers that cover the introduction of product lines and the dynamics
of organizations attempting to introduce product lines. We have papers that
discuss how to choose which products to produce and how to model the features
of those products. All of these topics are essential to the success or failure of
a product line within an organization and contribute to the uniqueness of the
discipline.

We have several sessions that deal with the discovery, management, and im-
plementation of variability. Variability is perhaps the single most important dis-
tinguishing element of product lines as compared to single system development.
Identification of variation among products is essential to discover the scope of a
set of core development assets and identification of variations within a design is
essential to manage the production of products from these core assets.

We also cover specialized topics within normal software engineering and their
relationship to product line development. Topics such as necessary tool support,
validation of aspects of a system’s behavior, and the relationship between prod-
uct lines and component-based software engineering are also covered within the
program.

In short, we have selected a collection of papers that cover a broad spectrum
of the areas within product lines of software and are excited about the continued
development of the field.

August 2002 Len Bass and Henk Obbink

Organizing Committee

Conference Chair: Linda M. Northrop
(Software Engineering Institute, USA)

Program Co-chair: Len Bass
(Software Engineering Institute, USA)
Henk Obbink
(Philips, The Netherlands)

Tutorial Chair: Patrick Donohoe
(Software Engineering Institute, USA)

Workshop Chair: Sholom Cohen
(Software Engineering Institute, USA)

Panel Chair: Paul Clements
(Software Engineering Institute, USA)

Demonstration Chair: Felix Bachmann
(Software Engineering Institute, USA)

Proceedings Editor: Gary Chastek
(Software Engineering Institute, USA)

Program Committee

Felix Bachmann (Software Engineering Institute)
Stuart Faulk (University of Oregon)

Frank van der Linden (Philips Medical Systems)
Sergio Bandinelli (European Software Institute)
Cristina Gacek (University of Newcastle)

Nenad Medvidovic (University of Southern California)
Don Batory (University of Texas at Austin)

André van der Hoek (University of California, Irvine)
Michael Moore (NASA /Goddard Space Flight Center)
Joseph H. Bauman (Hewlett Packard)

Jean Jourdan (Thales)

Robert L. Nord (Siemens Research, Inc.)

Glinter W. Bockle (Siemens AG)

Peter Knauber (Fraunhofer IESE)

Scott Preece (Motorola)

Jan Bosch (University of Groningen)

Philippe Kruchten (Rational Software, Canada)
Alexander Ran (Nokia Research Center)

Grady H. Campbell (Prosperity Heights Software)
Charles W. Krueger (BigLever Software)

David Sharp (The Boeing Company)

Paul Clements (Software Engineering Institute, USA)
Juha H. T. Kuusela (Nokia Research Center)

Steffen Thiel (Robert Bosch GmbH, Germany)

David M. Weiss (Avaya)

Table of Contents

On the Influence of Variabilities
on the Application-Engineering Process of a Product Family............. 1
Lars Geyer, Martin Becker

Representing Variability in Software Product Lines:
A a5 SEAY: w5 crumeimssmsmnss smas s emsss s sesssens sssssessmsnss sy 15
Michel Jaring, Jan Bosch

Variation Management for Software Production Lines................... 37
Charles W. Krueger

Adopting and Institutionalizing a Product Line Culture................. 49
Giinter Bockle, Jesis Bermejo Munoz, Peter Knauber,
Charles W. Krueger, Julio Cesar Sampaio do Prado Leite,
Frank van der Linden, Linda Northrop, Michael Stark, David M. Weiss

Establishing a Software Product Line in an Immature Domain 60
Stefan Voget, Martin Becker

Critical Factors for a Successful Platform-Based Product Family Approach 68
Jan Gerben Wijnstra

Product Line Architecture and the Separation of Concerns 90
Jay van Zyl
Model-Driven Product Line Architectures e 110

Dirk Muthig, Colin Atkinson

Systematic Integration of Variability
into Product Line Architecture Design 130
Steffen Thiel, Andreas Hein

Adaptable Components for Software Product Line Engineering 154
T. John Brown, Ivor Spence, Peter Kilpatrick, Danny Crookes

Using First-Order Logic for Product Line Model Validation 176
Mike Mannion

Product Line Annotations with UML-F 188
Wolfgang Pree, Marcus Fontoura, Bernhard Rumpe

Feature Modeling: A Meta-model to Enhance Usability and Usefulness. ... 198
Daniel Fey, Robert Fajta, Andrds Boros

X Table of Contents

Feature-Based Product Line Instantiation Using Source-Level Packages ... 217
Arie van Deursen, Merijn de Jonge, Tobias Kuipers

Feature Interaction and Dependencies: Modeling Features
for Reengineering a Legacy Product Line.............................. 235
Stefan Ferber, Jirgen Haag, Juha Savolainen

Maturity and Evolution in Software Product Lines:

Approaches, Artefacts and Organization 257
Jan Bosch
Evolutionary Introduction of Software Product Lines 272

Daniel Simon, Thomas FEisenbarth

Governance Polarities of Internal Product Lines. 284
Truman M. Jolley, David J. Kasik, Conrad E. Kimball

Performance Analysis of Component-Based Applications 299
Sherif Yacoub

Using the Options Analysis for Reengineering (OAR) Method
for Mining Components for a Product Line............................ 316
Dennis Smith, Liam O’ Brien, John Bergey

Widening the Scope of Software Product Lines —
From Variation to Compositioniiiiiineenn. .. 328
Rob van Ommering, Jan Bosch

A Method for Product Line Scoping
Based on a Decision-Making Framework 348
Tomoji Kishi, Natsuko Noda, Takuya Katayama

Using a Marketing and Product Plan

as a Key Driver for Product Line Asset Development 366
Kyo C. Kang, Patrick Donohoe, Eunman Koh, Jaejoon Lee,
Kwanwoo Lee

Engineering Software Architectures, Processes and Platforms
for System Families — ESAPS Overview 383
Frank van der Linden

Author Index 399

On the Influence of Variabilities on the Application-
Engineering Process of a Product Family™

Lars Geyer and Martin Becker

System Software Research Group
p.o. box 3049
University of Kaiserslautern
D-67653 Kaiserslautern, Germany
{geyer, mbecker}@informatik.uni-kl.de

Abstract. Product Families typically comprise a set of software assets, which
offer the possibility to configure the product family to the needs of a specific
application. The configuration process is driven by the variabilities (i.e., the
variable requirements that were implemented into the software assets in the
form of variation points). During application engineering, a developer selects a
consistent set of variabilities; this set is used to instantiate the family assets to
the needed functionality. This paper describes the influence of this
configuration step on the application-engineering process of a product family.
In addition, it identifies the requirements imposed on a configuration technique
by the described product family application-engineering process.

1 Introduction

In many application domains, software products are part of a product line (i.e.,
systems are used in similar environments to fulfill similar tasks). Experiences in
recent years show that it is feasible to take advantage of this relationship by
implementing a product line as a product family (i.e., by a common infrastructure),
which builds the core of every product. With this basis it is only necessary to
configure and adapt the infrastructure to the requirements of the specific application.
If product family engineering is done right, this results in a considerable decrease in
effort needed for the construction of a single system.

A key problem of the success of a product family is the handling of the differences
between family members. The requirements relevant to the product family are
typically separated into commonalities and variabilities. The commonalities are easy
to handle. Since they are part of every system in the family, they can simply be
integrated into the infrastructure and automatically reused during the development of
the single applications.

Handling variabilities is more difficult. They are part of only some systems in the
family, so, the infrastructure has to define the places in which a variability takes
effect. These so-called variation points need to be identified, and there needs to be

* This research was supported by the Deutsche Forschungsgemeinschaft as part of Special
Research Project 501.

G. Chastek (Ed.): SPLC2 2002, LNCS 2379, pp. 1-14, 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 Lars Geyer and Martin Becker

trace information between the variation points and the corresponding variability. In
[4], we proposed a variability model as a model, which captures the variability-related
information of a product family, and which, therefore, documents the traceability
information to the associated variation points in the assets of the product family.

In this paper, we first present a detailed definition to clarify the meaning of the
concepts relevant to the handling of variability and their interconnections. Second, we
discuss the handling of the offered variability during the application-engineering
process (i.e., we describe how the configuration of the variability in the product
family is embedded into the application-engineering process). Third, we analyze the
resulting application-engineering process for requirements towards a configuration
technique, which is suitable in the context of product families.

In the next section, we define key terms. In Section 3, we describe the embedding
of the configuration into the application-engineering process. The subsequent section
deals with some specific issues in the context of this embedding. Requirements for a
configuration technique are summarized in Section 5. This paper concludes with some
closing remarks and a look to the future in Section 6.

2 Concepts and Their Interconnections

2.1 Product Lines and Product Families

At first, we start with the definition of a software product line. A software product
line or is a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission [1].
A product family, on the other hand, is a set of systems built from a common set of
software assets [1] (i.e., the systems of a product family are based on the same reuse
infrastructure). So, the main difference between these two terms is that they describe
two different viewpoints. A product line describes a set of related systems from the
viewpoint of common functionality, while the term product family describes a set of
systems, which are build on common assets.

The definition of product family uses the term software asset. This term is defined
as either a partial solution (e.g., a component or a design document) or knowledge
(e.g., a requirements database or test procedures). Engineers use assets to build or
modify software products [13]. The reuse infrastructure of a product family comprises
a set of assets.

2.2 Commonality and Variability

A commonality is a quality or functionality that all the applications in a product
family share. As a consequence, commonalities are the elements with the highest
reuse potential because an implementation of a commonality is used in all family
members. In contrast, a variability represents a capability to change or customize a
system [12] (i.e., it abstracts from the varying but coherent qualities in regard to one
facet between the members of the family [4]). Variabilities always represent a
variable aspect from the viewpoint of the requirements (i.e., they abstract from a
variable functionality or a variable quality of the system).

On the Influence of Variabilities on the Application-Engineering Process 3

The range of a variability identifies the possible variants that represent the different
incarnations of the variability found in the family members. The range may also
represent a numerical variability, which offers the possibility to choose the value from
a range of integer or real numbers. Other variabilities are simply open issues (i.e., for
them, it did not make sense to specify a finite set of variants). Instead, an environment
is defined in which a developer has to integrate a specific solution for the variability.
In some cases, variants may already exist variants for an open variability, but this set
is not finite (i.e., new variants may be integrated for a product family member).

The variability described above deals with qualitative aspects (i.e., different kinds
of functionality are chosen from a set of variants). Another type of variability is
concerned with quantitative aspects. In some domains, it is necessary to include
related functionality with different characteristics more than once. For example, in the
domain of building automation systems, a whole set of common and variable
functionality describes how a system should control a room. Typically, there are
several room types in a building, like offices, computer labs, or meeting rooms. For
each room type, the control strategy is the same, but the strategy differs between
different room types. This results in a separate specification of the variable
functionality for each room type (i.e., a set of variable requirements needs to be
instantiated several times during the configuration of the product family). This
quantitative type of variability is an orthogonal type compared to the qualitative
variabilities; the handling of it is different, as can be seen later in this paper.

2.3 Features

The requirements of a product family are typically abstracted to features. A feature is
a logical unit of behavior that is specified by a set of functional and quality
requirements [5]. They are structured in a feature model [11][8], which creates a
hierarchical ordering of the features in a tree. The hierarchy expresses a refinement
relationship between features. The high-level functionality groups are typically
represented near the root of the tree. These groups are refined on the next step with
more detailed features, which are further refined on the next step, and so on.

Features can be classified as mandatory (i.e., they are simply part of a system if its
parent in the feature hierarchy is part of the system). Alternatively, features can be
classified as optional (i.e., associated with the feature is the decision of whether the
feature is part of a family member). In addition, features can be numerical (i.e.,
associated to the feature is a range of numbers). During the configuration, the value of
the feature is chosen from this numeric range.

Related optional features may be arranged in groups that are associated with a
multiplicity. In this way, they allow for the definition of dependencies between
features, like the classic alternative features in the Feature-Oriented Domain Analysis
(FODA) method [11]. Alternative features are represented as a group with an “exactly
one”’-semantic (i.e., exactly one of the optional features may be part of a system). The
“exactly one”-semantic can be weakened to an “at most one”-semantic (i.e., it is
permissible to choose none of the alternative features). Furthermore, groups can be
used to express mandatory subsets (i.e., in a group of features with an “at least one”’-
semantic, at least one of the features has to be part of a system).

In addition to these simple dependencies between features, there are more complex
relationships. Typically, requires and excludes relationships are found in the literature

4 Lars Geyer and Martin Becker

(e.g., in [8]). A requires dependency exists when the integration of a feature requires
the integration of another feature. The excludes relationship, on the contrary, exists
when two feature as incompatible (i.e., they are not allowed to be part of the same
system). But dependencies can also combine more than two features. These
relationships are typically formulated in Boolean expressions. Between features with
a numeric range, relational or even functional dependencies can be defined. In some
cases, it is necessary to hold an equation, which combines the values of numerical
features; in this case, we have a relational dependency between the concerned
features. In other cases, it is possible to compute the value of one feature out of the
values of others, yielding a functional dependency.

A feature model can be used favorably for the description of the commonalities
and variabilities of a product family. Typically, the commonalities build the core of
the feature tree. Plugged into this core are the variabilities as branches of the feature
tree; they are further refined by subordinate features, which can be classified as
mandatory or optional. Qualitative variabilities are either represented by optional
features or by feature groups. Optional features represent optional variabilities, while
feature groups are used if a variability contains more than one variant. Numerical
variabilities are expressed by numerical features, and open variabilities are expressed
by abstract features (i.e., an abstract feature simply references an environment in
which the open functionality has to be integrated). Quantitative variability is
expressed by cardinalities associated to the link between a superior feature and a
subordinate feature (i.e., a cardinality greater than one allows for a multiple
instantiation of the subtree defined by the subordinate feature).

Feature models are a suitable basis for the configuration of the product family (i.e.,
they can be used as the basic structure of a decision model for the adaptation of the
assets of a product family). The feature models can be described easily in a
configuration technology, which is used during the configuration process to specify a
consistent set of features. This feature set is mapped onto the reuse infrastructure,
allowing a fast construction of the core functionality of an application. A detailed
description of this process is given in the next section.

2.4 Variation Points

Jacobsen, et al. define a variation point as an identifier of one or more locations in a
software asset at which the variation will occur [10]. We restrict this definition to one
location, therefore allowing multiple variation points to identify locations where a
specific variation will occur (i.e., a variation point always identifies one spot in an
asset, but a variability may influence more than one variation point). Nonetheless,
variation points reflect the variabilities” impacts in the assets. Typically, there is a set
of solutions that can be integrated into one variation point. Each alternative of a
variation point implements a solution for a specific variant of the variability.

The solutions, which resolve a variation point, are typically of three types [3]. The
first type is a piece of the model in which the variation point is defined (e.g., it may be
a piece of code or a part of an architecture). The piece is simply pasted into the model,
thereby replacing the variation point. The new piece can contain additional variation
points, so the resolution of variation points is a recursive process.

The second type is a variation point representing a parameter whose value is
generated. This starts from a simple substitution of a symbol with a value. But it can

On the Influence of Variabilities on the Application-Engineering Process 5

also comprise the generation of a piece of the asset’s model out of a high-level
specification, which is completed by the selection of a variant for a variability. During
the generation, new variation points can be inserted into the asset model, also
resulting in a recursive resolution of variation points.

The third type simply defines an empty frame in which a solution must be created
in a creative task by a developer. This type of variation point always comes into play
if the range of the variability is open (i.e., not completely defined during the domain-
engineering process). In some cases, a variation point is associated with an open set of
alternatives. In order to resolve the variation point, it is possible to either choose one
of the alternative solutions or integrate an application-specific solution that is
developed in a creative task.

Associated with each variation point is a binding time, at which the resolution of
the variation point takes place. Typical binding times are architecture configuration
(component selection), component configuration (component parameterization),
startup time, and runtime. The detailed dependencies between the resolution of
variation points at the specified binding time and the application-engineering process
are described in the next section.

The relationship between variabilities and variation points is n to m (i.e., one
variability may affect several variation points and, conversely, a variation point may
be influenced by several variabilities). One variability can have variants, which
influence the system not only in different components but also at different binding
times. Figure 1 shows the connection between assets, variation points, and
variabilities.

Bound Asset

derived from

all VPs are
. resolved

Variabiiity |~ ' [VariationPoint | ' 1" _[Bound Variation Point
causes resolved to
AN 1
capability to change location that is
or adapt a system affected by a
variability

Fig. 1. The Connection Between Variabilities, Variation Points and Assets

3 The Application-Engineering Process

In this section, we will describe the embedding of variability handling into the
application-engineering process of a product family. We describe the embedding in
this section, and present some integration issues in the next section.

6 Lars Geyer and Martin Becker

3.1 The Product Family Process

The product family process can be seen in Figure 2. In this figure, the well-known
six-pack is presented (i.e., on the upper half of the picture, the domain-engineering
process is shown, which comprises the domain analysis, the domain design, and the
domain implementation tasks). Each of these steps has one equivalent in the
application-engineering process, shown on the lower half of the figure. The
counterpart of the domain analysis is the application requirements engineering,
followed by the application design and the application implementation task.

Domain Engineering

Appiication Engineering |

Fig. 2. The Development Process of Product Families: The process comprises a domain-
engineering process, which implements the reuse infrastructure shown on asset base between
the two subprocesses. The reuse infrastructure is used in the application-engineering process as
the core for the development of family members.

In a product family approach, the domain-engineering process is responsible for
the creation of reusable assets, which are shown in Figure 2 between the two
processes in the middle. The domain-engineering process generates assets on each
level (i.e., in the asset base are requirements templates, a generic software
architecture, and reusable generic components). Each asset is associated to a specific
process task, in which the contained variation points are bound to concrete solutions:
the variation points with a binding-time architecture configuration are to be found in
assets associated to the application design task. After this task is performed, all
variation points with this binding time are bound to a solution. The variation points
with a binding-time component configuration are to be found in assets associated to
the application implementation task. After performing this task, all variation points
with this binding time are bound to a solution.

